Preparation and study of titanium alloy Ti–38Zr–9Nb (at. %) for medical purposes
- Авторлар: Kaplan M.A.1, Konushkin S.V.1, Sergienko K.V.1, Gorbenko A.D.1, Zhidkov V.K.1, Volchikhina M.A.1, Sevostyanova T.M.2, Morozova Y.A.1, Ivannikov A.Y.1, Frolova M.G.1, Kolmakov A.G.1, Sevostyanov M.A.1
-
Мекемелер:
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
- Pirogov Russian National Research Medical University
- Шығарылым: Том 520, № 1 (2025)
- Беттер: 33-40
- Бөлім: CHEMICAL TECHNOLOGY
- URL: https://journals.rcsi.science/2686-9535/article/view/294519
- DOI: https://doi.org/10.31857/S2686953525010048
- EDN: https://elibrary.ru/AWGWOD
- ID: 294519
Дәйексөз келтіру
Аннотация
Titanium and its alloys have a number of unique properties, such as high specific strength, corrosion resistance, non-toxicity and biocompatibility with human tissues. Due to these properties, they are widely used to create prosthetic joints for the human body. However, the material used for implants, VT6 (Ti–6Al–4V), can cause a stress shielding effect due to a higher elastic modulus (110 GPa) compared to human bone (<30 GPa). In addition, Al and V ions released from the VT6 alloy can cause health problems such as Alzheimer's disease, osteomalacia and neuropathy. Therefore, the development of titanium-based materials that are non-toxic and have mechanical properties corresponding to natural bone is an urgent task. In this paper, we study Ti–38Zr–9Nb (at. %) alloy ingots and plates obtained from them. Particular attention is paid to the homogeneity of the chemical composition, microstructure, phase composition and mechanical properties. The ingots obtained as a result of the work are suitable for further pressure processing. Homogenizing annealing at a temperature of 1000°C for two hours destroys the dendritic structure of the alloy. After homogenizing annealing, the α'-phase completely dissolves in the β-phase, which is the main one for using the alloy in implants. The microstructure of the plates is uniform and consists of polyhedral β-grains. The grain size after rolling is approximately 100 μm. X-ray phase analysis showed that the alloy consists of metastable β-Ti stabilized by Nb and Zr. The Ti-38Zr-9Nb alloy has good mechanical properties, which make it a suitable material for medical purposes.
Негізгі сөздер
Толық мәтін

Авторлар туралы
M. Kaplan
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: mishakaplan@yandex.ru
Ресей, 119334 Moscow
S. Konushkin
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Email: mishakaplan@yandex.ru
Ресей, 119334 Moscow
K. Sergienko
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Email: mishakaplan@yandex.ru
Ресей, 119334 Moscow
A. Gorbenko
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Email: mishakaplan@yandex.ru
Ресей, 119334 Moscow
V. Zhidkov
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Email: mishakaplan@yandex.ru
Ресей, 119334 Moscow
M. Volchikhina
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Email: mishakaplan@yandex.ru
Ресей, 119334 Moscow
T. Sevostyanova
Pirogov Russian National Research Medical University
Email: mishakaplan@yandex.ru
Ресей, 117513 Moscow
Ya. Morozova
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Email: mishakaplan@yandex.ru
Ресей, 119334 Moscow
A. Ivannikov
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Email: mishakaplan@yandex.ru
Ресей, 119334 Moscow
M. Frolova
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Email: mishakaplan@yandex.ru
Ресей, 119334 Moscow
A. Kolmakov
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Email: mishakaplan@yandex.ru
Corresponding Member of the RAS
Ресей, 119334 MoscowM. Sevostyanov
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Email: mishakaplan@yandex.ru
Ресей, 119334 Moscow
Әдебиет тізімі
- Kim H.Y., Ikehara Y., Kim J.I., Hosoda H., Miyazaki S. // Acta mater. 2006. Т. 54. № 9. P. 2419–2429. https://doi.org/10.1016/j.actamat.2006.01.019
- Zhang J., Li Y., Li W. // J. Mater. Sci. 2021. Т. 56. P. 11456–11468. https://doi.org/10.1007/s10853-021-05814-4
- Patel N., Gohil P. // Int. J. Emerg. Technol. Adv. Eng. 2012. T. 2. № 4. P. 91–101.
- Bai L., Gong C., Chen X., Sun Y., Zhang J., Cai L., Zhu S., Xie S.Q. // Metals. 2019. T. 9. № 9. P. 1004. https://doi.org/10.3390/met9091004
- Chao Q., Hodgson P.D., Beladi H. // Metall. Mater. Trans. A. 2014. V. 45. P. 2659–2671. https://doi.org/10.1007/s11661-014-2205-5
- Park Y.J., Song Y.H., An J.H., Song H.J., Anusavice K.J. // J. Dent. 2013. V. 41. № 12. P. 1251–1258. https://doi.org/10.1016/j.jdent.2013.09.003
- Li Y., Wong C., Xiong J., Hodgson P., Wen C. // J. Dent. Res. 2010. V. 89. № 5. P. 493–497. https://doi.org/10.1177/0022034510363675
- Schneider S.G., Nunes C.A., Rogero S.O., Higa O.Z., Bressiani J.C. // Biomecánica. 2000. V. 8. № 1. P. 84–87. https://doi.org/10.5821/sibb.v8i1.1653
- Mishra A.K., Davidson J.A., Poggie R.A., Kovacs P., Ted J. Mechanical and tribological properties and biocompatibility of diffusion hardened Ti-13Nb-13Zr – A new titanium alloy for surgical implants. In: Medical applications of titanium and its alloys. Brown S.A., Lemons J.E. (eds). ASTM STP 1272, ASTM International, West Conshohocken, PA, 1996. pp. 96–116.
- Black J. Biological performance of materials. Fundamentals of biocompability. 4th ed. Taylor & Francis Group, LCC: Abingdon, UK, 2005. 520 p. https://doi.org/10.1201/9781420057843
- Конушкин С.В., Кирсанкин А.А., Михайлова А.В., Румянцев Б.А., Лукьянов А.С., Каплан М.А., Горбенко А.Д., Сергиенко К.В., Насакина Е.О., Колмаков А.Г., Севостьянов М.А. // Электрометаллургия. 2023. № 10. C. 2–8. https://doi.org/10.31044/1684-5781-2023-0-10-2-8
- Насакина Е.О., Сударчикова М.А., Баикин А.С., Мельникова А.А., Демин К.Ю., Дормидонтов Н.А., Прокофьев П.А., Конушкин С.В., Сергиенко К.В., Каплан М.А., Севостьянов М.А., Колмаков А.Г. // Деформация и разрушение материалов. 2023. № 12. С. 25–29. https://doi.org/10.31044/1814-4632-2023-12-25-29
- Сергиенко К.В., Михайлова А.В., Конушкин С.В., Каплан М.А., Насакина Е.О., Севостьянов М.А., Баикин А.С., Колмаков А.Г. // Металлы. 2022. № 4. C. 33–39. https://doi.org/10.30791/1028-978X-2023-12-32-42
- Mohammed M.T., Khan Z.A., Siddiquee A.N. // Int. J. Chem. Nucl. Metall. Mater. Eng. 2014. V. 8. № 8. P. 822–827. https://doi.org/10.5281/zenodo.1094481
- Chen Q., Thouas G.A. // Mater. Sci. Eng. R Rep. 2015. V. 87. P. 1–57. https://doi.org/10.1016/j.mser.2014.10.001
- Liu Q., Meng Q., Guo S., Zhao X. // Prog. Nat. Sci. Mater. Int. 2013. V. 23. № 6. P. 562–565. https://doi.org/10.1016/j.pnsc.2013.11.005
- Raffa M.L., Nguyen V.-H., Hernigou P., Flouzat-Lachaniette C.H., Haiat G. // J. Orthop. Res. 2021. V. 39. № 6. 1174–1183. https://doi.org/10.1002/jor.24840
- Shahzamanian M.M., Banerjee R., Dahotre N.B., Srinivasa A.R., Reddy J.N. // Compos. Struct. 2023. V. 39. 117262. https://doi.org/10.1016/j.compstruct.2023.117262
- Konushkin S.V., Kaplan M.A., Sergienko K.V., Gorbenko A.D., Morozova Y.A., Ivannikov A.Yu., Sudarchikova M.A., Sevostyanova T.M., Nasakina E.O., Mikhlik S.A., Kolmakov A.G., Sevostyanov M.A. // Inorg. Mater. Appl. Res. 2024. V. 15. № 2. P. 395–401. https://doi.org/10.1134/S2075113324020266
- Hanawa T. // Sci. Technol. Adv. Mater. 2022. V. 23. № 1. P. 457–472. https://doi.org/10.1080/14686996.2022.2106156
- Popescu S.M., Manolea H., Diaconu O.A., Mercuţ V., Scrieciu M., Dascǎlu I.T., Ţuculina M.J., Obadan F., Popescu F.D. // Defect and Diffusion Forum, 2017. V. 376. P. 12–28. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/DDF.376.12
- O’Brien B. Niobium biomaterials. In: Advances in metallic biomaterials. Niinomi M., Narushima T., Nakai M. (eds). Springer Series in Biomaterials Science and Engineering, vol. 3. Springer, Berlin, Heidelberg, 2015. 245–272. https://doi.org/10.1007/978-3-662-46836-4_11
- Sergienko K.V., Konushkin S.V., Kaplan M.A., Gorbenko A.D., Guo Y., Nasakina E.O., Sudarchikova M.A., Sevostyanova T.M., Morozova Ya.A., Shatova L.A., Mikhlik S.A., Sevostyanov M.A., Kolmakov A.G. // Metals. 2024. V. 14. №11. 1311. https://doi.org/10.3390/met14111311
- Wang B.L., Li L., Zheng Y.F. // Biomed. Mater. 2010. V. 5. № 4. 044102. https://doi.org/10.1088/1748-6041/5/4/044102
Қосымша файлдар
