A NEW STRATEGY FOR THE SYNTHESIS OF HIGHLY ACTIVE CATALYSTS BASED ON g-C3N4 FOR THE PHOTOCATALYTIC PRODUCTION OF HYDROGEN UNDER VISIBLE LIGHT

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In this work, materials based on graphite-like carbon nitride were synthesized by thermal treatment of a mixture of melamine and urea and the effect of synthesis conditions on the photocatalytic activity of the samples was studied. As a cocatalyst, platinum (1 wt. %) was deposited on the surface of the synthesized g‑C3N4 samples. The photocatalysts were characterized by X-ray phase analysis, diffuse reflectance UV-vis spectro-scopy in the UV and visible range, and low-temperature nitrogen adsorption. Photocatalytic activity was determined in the reaction of hydrogen evolution from an aqueous solution of triethanolamine (10 vol. %) under visible light irradiation (λ = 425 nm). The optimal conditions for the synthesis of the photocatalyst 1% Pt/g-C3N4, obtained by calcination of a mixture of melamine and urea (1 : 3), were found, using which the rate of H2 evolution was 5.0 mmol g–1 h–1 with an apparent quantum efficiency of 2.5%. The developed synthetic approach makes it possible to obtain highly active catalysts due to the formation of an intermediate supramolecular melamine-cyanuric acid complex during the synthesis, which, upon further heating, turns into g-C3N4, which is characterized by a high specific surface area exceeding 100 m2 g–1.

Негізгі сөздер

Авторлар туралы

K. Potapenko

Federal Research Center Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences

Email: kozlova@catalysis.ru
Russian Federation, 630090, Novosibirsk

S. Cherepanova

Federal Research Center Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences

Email: kozlova@catalysis.ru
Russian Federation, 630090, Novosibirsk

E. Kozlova

Federal Research Center Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: kozlova@catalysis.ru
Russian Federation, 630090, Novosibirsk

Әдебиет тізімі

  1. Ran J., Zhang J., Yu J., Jaroniec M., Qiao S.Z. // Chem. Soc. Rev. 2014. V. 43. P. 7787–7812. https://doi.org/10.1039/C3CS60425J
  2. Wu L.Z., Chen B., Li Z.J., Tung C.H. // Acc. Chem. Res. 2014. V. 47. P. 2177–2185. https://doi.org/10.1021/ar500140r
  3. Zamaraev K.I., Parmon V.N. // Catal. Rev. – Sci. Eng. 1980. V. 22. P. 261–324. https://doi.org/10.1080/03602458008066536
  4. Acar C., Dincer, I., Naterer G.F. // Int. J. Energy Res. 2016. V. 40. P. 1449–1473. https://doi.org/10.1002/er.3549
  5. Kozlova E.A., Parmon V.N. // Russ. Chem. Rev. 2017. V. 86. P. 870–906. https://doi.org/10.1070/rcr4739
  6. Yakushev A.A., Abel A.S., Averin A.D., Beletskaya I.P., Cheprakov A.V., Ziankou I.S., Bonneviot L., Bessmertnykh-Lemeune A. // Coord. Chem. Rev. 2022. V. 458. P. 214331. https://doi.org/10.1016/j.ccr.2021.214331
  7. Zenkov I.S., Yakushev A.A., Abel A.S., Averin A.D., Bessmertnykh-Lemeune A.G., Beletskaya I.P. // Russ. J. Org. Chem. 2021. V. 57. P. 1398–1404. https://doi.org/10.1134/S1070428021090025
  8. Morozkov G.V., Abel A.S., Filatov M.A., Nefedov S.E., Roznyatovsky V.A., Cheprakov A.V., Mitrofanov A.Yu., Ziankou I.S., Averin A.D., Beletskaya I.P., Michalak J., Bucher C., Bonneviot L., Bessmertnykh-Lemeune A. // Dalton Trans. 2022. V. 51. P. 13612–13630. https://doi.org/10.1039/D2DT01364A
  9. Wang X., Chen L., Chong S.Y., Little M.A., Wu Y., Zhu W.H., Clowes R., Yan Y., Zwijnenburg M.A., Sprick R.S., Cooper A.I. // Nature Chem. 2018. V. 10. P. 1180–1189. https://doi.org/10.1038/ s41557-018-0141-5
  10. Hu Z., Shen Z., Jimmy C.Y. // Green Chem. 2017. V. 19. P. 588–613. https://doi.org/10.1039/C6GC02825J
  11. Corredor J., Rivero M.J., Rangel C.M., Gloaguen F., Ortiz I. // J. Chem. Technol. Biotechnol. 2019. V. 94. P. 3049–3063. https://doi.org/10.1002/jctb.6123
  12. Matsumura M., Saho Y., Tsubomura H. // J. Phys. Chem. 1983. V. 87. P. 3807–3808. https://doi.org/10.1021/j100243a005
  13. Hayat A., Syed J.A.S., Al-Sehemi A.G., El-Nasser K.S., Taha T.A., Al-Ghamdi A.A., Amin M.A., Ajmal Z., Iqbal W., Palamanit A., Medina D.I., Nawawi W.I., Sohail M. // Int. J. Hydrogen Energy. 2022. V. 47. P. 10837–10867. https://doi.org/10.1016/j.ijhydene.2021.11.252
  14. Zhu B., Cheng B., Fan J., Ho W., Yu J. // Small Struct. 2021. V. 2. P. 2100086. https://doi.org/10.1002/sstr.202100086
  15. Vasilchenko D., Zhurenok A., Saraev A., Gerasimov E., Cherepanova S., Tkachev S., Plusnin P., Kozlova E. // Chem. Eng. J. 2022. V. 445. P. 136721. https://doi.org/10.1016/j.cej.2022.136721
  16. Wang X., Maeda K., Thomas A., Takanabe K., Xin G., Carlsson J.M., Domen K., Antonietti M. // Nature Mater. 2009. V. 8. P. 76–80. https://doi.org/10.1038/nmat2317
  17. Ye S., Wang R., Wu M.Z., Yuan Y.P. // Appl. Surf. Sci. 2015. V. P. 15–27. https://doi.org/10.1016/J.APSUSC.2015.08.173
  18. Topchiyan P., Vasilchenko D., Tkachev S., Sheven D., Eltsov I., Asanov I., Sidorenko N., Saraev A., Gerasimov E., Kurenkova A., Kozlova E. // ACS Appl. Mater. Interfaces. 2022. V. 14. P. 35600–35612. https://doi.org/10.1021/ACSAMI.2C07485
  19. Cao S., Low J., Yu J., Jaroniec M. // Adv. Mater. 2015. V. 27. P. 2150–2176. https://doi.org/10.1002/adma.201500033
  20. Zhong Y., Wang Z., Feng J., Yan S., Zhang H., Li Z., Zou Z. // Appl. Surf. Sci. 2014. V. 295. P. 253–259. https://doi.org/10.1016/J.APSUSC.2014.01.008
  21. Zhu B., Xia P., Ho W., Yu J. // Appl. Surf. Sci. 2015. V. 344. P. 188–195. https://doi.org/10.1016/J.APSUSC.2015.03.086
  22. Zhurenok A.V., Vasilchenko D.B., Kozlova E.A. // Int. J. Mol. Sci. 2023. V. 24. P. 346. https://doi.org/10.3390/IJMS24010346
  23. Han C., Gao Y., Liu S., Ge L., Xiao N., Dai D., Xu B., Chen C. // Int. J. Hydrogen Energy. 2017. V. 42. P. 22765–22775. https://doi.org/10.1016/J.IJHYDENE.2017.07.154
  24. Tian X., Sun Y.-J., He J.-Y., Wang X.-J., Zhao J., Qiao, S.-Z., Li F.-T. // J. Mater. Chem. A. 2019. V. 7. P. 7628–7635. https://doi.org/10.1039/C9TA00129H
  25. Niu P., Yin L.C., Yang Y.Q., Liu G., Cheng H.M. // Adv. Mater. 2014. V. 26. P. 8046–8052. https://doi.org/10.1002/ADMA.201404057
  26. Bian S.W., Ma Z., Song W.G. // J. Phys. Chem. C. 2009. V. 113. P. 8668–8672. https://doi.org/10.1021/JP810630K
  27. Wang J., Zhang C., Shen Y., Zhou Z., Yu J., Li Y., Wei W., Liu S., Zhang Y. // J. Mater. Chem. A. 2015. V. 3. P. 5126–5131. https://doi.org/10.1039/C4TA06778A
  28. Zhuang J., Lai W., Xu M., Zhou Q., Tang D. // ACS Appl. Mater. Interfaces. 2015. V. 7. P. 8330–8338. https://doi.org/10.1021/ACSAMI.5B01923
  29. Li X., Wen J., Low J., Fang Y., Yu J. // Sci. China Mater. 2014. V. 57. P. 70–100. https://doi.org/10.1007/S40843-014-0003-1
  30. Li R., Cui X., Bi J., Ji X., Li X., Wang N., Huang Y., Huang X., Hao H. // RSC Adv. 2021. V. 11. P. 23459–23470. https://doi.org/10.1039/d1ra03524j
  31. de Ávila S.G., Logli M.A., Matos J.R. // Int. J. Greenhouse Gas Control. 2015. V. 42. P. 666–671. https://doi.org/10.1016/J.IJGGC.2015.10.001
  32. Cui Y., Zhang J., Zhang G., Huang J., Liu P., Antonietti M., Wang X. // J. Mater. Chem. 2011. V. 21. P. 13032–13039. https://doi.org/10.1039/C1JM11961C
  33. Xu Q., Ma D., Yang S., Tian Z., Cheng B., Fan J. // Appl. Surf. Sci. 2019. V. 495. P. 143555. https://doi.org/10.1016/J.APSUSC.2019.143555
  34. Li Y., Zhong J., Li J. // Int. J. Hydrogen Energy. 2022. V. 47. P. 39886–39897. https://doi.org/10.1016/J.IJHYDENE.2022.09.147
  35. Wang X., Zhou C., Shi R., Liu Q., Waterhouse G.I.N., Wu L., Tung C.H., Zhang T. // Nano Res. 2019. V. 12. P. 2385–2389. https://doi.org/10.1007/S12274-019-2357-0
  36. Ding J., Sun X., Wang Q., Li D., Li X., Li X., Chen L., Zhang X., Tian X., Ostrikov K. // J. Alloys Compd. 2021. V. 873. P. 159871. https://doi.org/10.1016/J.JALLCOM.2021.159871
  37. Han C., Su P., Tan B., Ma X., Lv H., Huang C., Wang P., Tong Z., Li G., Huang Y., Liu Z. // J. Colloid Interface Sci. 2021. V. 581. P. 159–166. https://doi.org/10.1016/J.JCIS.2020.07.119
  38. Rao F., Zhong J., Li J. // Ceram. Int. 2022. V. 48. P. 1439–1445. https://doi.org/10.1016/J.CERAMINT.2021.09.130
  39. Xu Q., Cheng B., Yu J., Liu G. // Carbon. 2017. V. 118. P. 241–249. https://doi.org/10.1016/J.CARBON.2017.03.052
  40. Yang L., Huang J., Shi L., Cao L., Yu Q., Jie Y., Fei J., Ouyang H., Ye J. // Appl. Catal. B. 2017. V. 204. P. 335–345. https://doi.org/10.1016/J.APCATB.2016.11.047
  41. Alcudia-Ramos M.A., Fuentez-Torres M.O., Ortiz-Chi F., Espinosa-González C.G., Hernández-Como N., García-Zaleta D.S., Kesarla M.K., Torres-Torres J.G., Collins-Martínez V., Godavarthi S. // Ceram. Int. 2020. V. 46. P. 38–45. https://doi.org/10.1016/J.CERAMINT.2019.08.228
  42. Bi L., Zhang R., Zhang K., Lin Y., Wang D., Zou X., Xie T. // ACS Sustain. Chem. Eng. 2019. V. 7. P. 15137–15145. https://doi.org/10.1021/ACSSUSCHEMENG.9B04153
  43. Zhang S., Gao M., Zhai Y., Wen J., Yu J., He T., Kang Z., Lu S. // J. Colloid Interface Sci. 2022. V. 622. P. 662–674. https://doi.org/10.1016/J.JCIS.2022.04.165
  44. Lin Q., Li Z., Lin T., Li B., Liao X., Yu H., Yu C. // Chin. J. Chem. Eng. 2020. V. 28. P. 2677–2688. https://doi.org/10.1016/J.CJCHE.2020.06.037
  45. Vasilchenko D., Zhurenok A., Saraev A., Gerasimov E., Cherepanova S., Kovtunova L., Tkachev S., Kozlova E. // Int. J. Hydrogen Energy. 2022. V. 47. P. 11326–11340. https://doi.org/10.1016/J.IJHYDENE.2021.09.253

Қосымша файлдар


© К.О. Потапенко, С.В. Черепанова, Е.А. Козлова, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>