Ice rheology exploration based on numerical simulation of low-speed impact

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Ice is a complex heterogeneous medium. Its behavior depends on many factors and changes in different processes. Thus, the problem of the determination of the correct rheological model is still unsolved. In this work low-speed impact on ice by the ball striker is considered. The main focus of the research is the development of the method of the correct model selection based on the computer simulation of the laboratory experiment. The simulation was conducted using the following rheology models: isotropic linear elasticity model, elastoplasticity model with the von Mises and the von Mises-Schleicher yield criteria, elasticity model with elastoplastic inclusion. The governing system of equations is solved using grid-characteristic method. Models’ comparison is performed based on the ball’s velocity and depth of ball’s immersion into the ice. The model parameters’ influence on the results is surveyed. As a result, the parameters that reconstruct the solution close to the experimental results are chosen.

全文:

受限制的访问

作者简介

I. Petrov

Moscow Institute of Physics and Technology (National Research University)

编辑信件的主要联系方式.
Email: petrov@mipt.ru

Corresponding Member of the RAS

俄罗斯联邦, Dolgoprudny, Moscow Region

E. Guseva

Moscow Institute of Physics and Technology (National Research University); Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Email: guseva.ek@phystech.edu
俄罗斯联邦, Dolgoprudny, Moscow Region; Moscow

V. Golubev

Moscow Institute of Physics and Technology (National Research University)

Email: golubev.vi@mipt.ru
俄罗斯联邦, Dolgoprudny, Moscow Region

V. Epifanov

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Email: evp@ipmnet.ru
俄罗斯联邦, Moscow

参考

  1. Staroszczyk R. Formation and Types of Natural Ice Masses / In: Ice Mechanics for Geophysical and Civil Engineering Applications. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. 2018. P. 7–19. http://dx.doi.org/10.1007/978-3-030-03038-4_2
  2. Maurel A, Lund F, Montagnat M. Propagation of elastic waves through textured polycrystals: application to ice // Proc. Math. Phys Eng. Sci. 2015. V. 71. № 2177. 20140988. https://doi.org/10.1098/rspa.2014.0988
  3. Muguruma J. Effects of surface condition on the mechanical properties of ice crystal // J. Physics D: Applied Physics. 1969. V. 2. № 11. P. 1517–1525. https://www.doi.org/10.1088/0022-3727/2/11/305
  4. Новацкий В. Теория упругости. М.: Мир, 1975. 872 с.
  5. Sinha N.H. Elasticity of natural types of polycrystalline ice // Cold Regions Science and Technology. 1989. V. 17. № 2. P. 127–135. http://dx.doi.org/10.1016/S0165-232X(89)80003-5
  6. Neumeier J.J. Elastic Constants, Bulk Modulus, and Compressibility of H2O Ice Ih for the Temperature Range 50 K–273 K // J. Phys. Chem. Ref. Data. 2018. V. 47. № 3. 033101. http://dx.doi.org/10.1063/1.5030640
  7. Langleben M.P. Youngs modulus for sea ice // Canadian Journal of Physics. 1962. V. 40. № 1. P. 1–8. http://dx.doi.org/10.1139/p62-001
  8. Frankenstein G., Garner R. Equations for Determining the Brine Volume of Sea Ice from −0.5° to −22.9 °C // J. Glaciology. 1967. V. 6. № 48. P. 943–944. https://doi.org/10.3189/S0022143000020244
  9. Timco G.W., Weeks W.F. A review of the engineering properties of sea ice // Cold Regions Science and Technology. 2010. V. 60. № 2. P. 107–129. http://dx.doi.org/10.1016/j.coldregions.2009.10.003
  10. Schulson E.M. Brittle failure of ice // Engineering Fracture Mechanics. 2001. V. 68. № 17–18. P. 1839–1887. http://dx.doi.org/10.1016/S0013-7944(01)00037-6
  11. Ince S. T., Kumar A., Paik J. K. A new constitutive equation on ice materials // Ships and Offshore Structures. 2017. V. 12. № 5. P. 610–623. https://doi.org/10.1080/17445302.2016.1190122
  12. Snyder S.A., Schulson E.M., Renshaw C.E. Effects of prestrain on the ductile-to-brittle transition of ice // Acta Materialia. 2016. V. 108. № 10. P. 110–127. http://dx.doi.org/10.1016/j.actamat.2016.01.062
  13. Jellinek H.H.G., Brill R. Viscoelastic Properties of Ice // J. Applied Physics. 1956. V. 27. № 10. P. 1198–1209. https://doi.org/10.1063/1.1722231
  14. Schulson E.M., Duval P. Ductile behavior of polycrystalline ice: experimental data and physical processes. / In: Creep and Fracture of Ice. 2009. P. 101–152. https://doi.org/10.1017/CBO9780511581397.007
  15. Качанов Л.М. Механика пластических сред. М.: Гостехиздат, 1948. 217 с.
  16. Коврижных А.М. Уравнения плоского напряженного состояния при условии пластичности Мизеса–Шлейхера // Прикладная механика и техническая физика. 2004. Т. 45. № 6. С. 144–153.
  17. Petrov I.B. Grid-characteristic methods. 55 years of developing and solving complex dynamic problems // Computational Mathematics and Information Technologies. 2023. V. 6. № 1. P. 6–21. http://dx.doi.org/10.23947/2587-8999-2023-6-1-6-21
  18. Petrov I.B., Golubev V.I., Ankipovich Y.S., Favorskaya A.V. Numerical Modeling of Acoustic Processes in Gradient Media Using the Grid-Characteristic Method // Dokl. Math. 2022. V. 106. № 3. P. 449–453. http://dx.doi.org/10.1134/S1064562422700090
  19. Kholodov A.S., Kholodov Y.A. Monotonicity criteria for difference schemes designed for hyperbolic equations // Comput. Math. and Math. Phys. 2006. V. 46. № 9. P. 1560–1588. http://dx.doi.org/10.1134/S0965542506090089
  20. Гусева Е.К., Голубев В.И., Петров И.Б. Линейные квазимонотонные и гибридные сеточно-характеристические схемы для численного решения задач линейной акустики // Сиб. журн. вычисл. математики. 2023. Т. 26 № 2. С. 135–147. http://dx.doi.org/10.15372/SJNM20230202
  21. Epifanov V.P. Physical mechanisms of ice contact fracture // Dokl. Phys. 2007. V. 52. № 1. P. 19–23. http://dx.doi.org/10.1134/S1028335807010053
  22. Епифанов В.П., Лычев С.А. Волновые явления при ударе жесткого индентора о лед // Волны и вихри в сложных средах: 13-я международная школа-конференция молодых ученых. Сборник материалов школы. 2022. С. 105–108.
  23. Епифанов В.П. Особенности контактного разрушения льда // Лед и Снег. 2020. Т. 60. № 2. С. 274–284. https://doi.org/10.31857/S2076673420020040

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Above is a general view of the calculated area and grid parameters, 2D. From the bottom left are experimental graphs, the blue curve is from the receiver in the ball, the purple one is from the receiver on the lower surface of the ice. From the bottom right is a mock–up of ice in an elasticity model with an elastic-plastic inclusion in the form of a semicircle of a given radius.

下载 (105KB)
3. Fig. 2. Wave patterns in calculations using the elasticity model with elastic–plastic inclusion r = 7.5, k = 3 × 105 (a); according to the elastic-plasticity model with the Mises-Schleicher condition in the central ice region, k0 = 3 × 105, a = 0.5 (b).

下载 (130KB)
4. Fig. 3. Calculation results. The rows have the same legend. The 1st column is the module of the vertical projection of the stress tensor from time at the bottom point of the ball, the 2nd is the coordinate, the 3rd is the velocity module.

下载 (692KB)
5. Fig. 4. The maximum depth of precipitation (on the left) and the time when the velocity modulus is minimal (on the right), depending on the parameters of the models under consideration. In each row, solid lines correspond to curves with the same parameters (legend in the center).

下载 (795KB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##