CURRENT TRENDS IN THE DEVELOPMENT OF HIGH-ENERGY LASERS

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Current trends in developing high-energy lasers with pulse energies in the tens and hundreds of joules are considered. Active media are analyzed for their use in such lasers. Yb:YAG active crystalline and ceramic elements (AE) of Russian production are experimentally investigated at temperatures from 100 K to 295 K. The data of the AE cryogenic cooling system are presented. A diode pumping system for AE and a homogenizer of its radiation are described. The physical and technical characteristics of the pumping system are given. Fresnel losses, absorption losses, and losses due to amplified spontaneous emission (ASE), which reduce the energy stored in an inverted population, are experimentally measured. The results of measuring the gain in multipass circuits with different sets of AEs are presented.

Sobre autores

S. Garanin

The Russian Federal Nuclear Center – All-Russian Scientific Research Institute of Experimental Physics,
Institute of Laser Physical Research

Email: makarov@triniti.ru
Russia, Nizhny Novgorod Region, Sarov

V. Derkach

The Russian Federal Nuclear Center – All-Russian Scientific Research Institute of Experimental Physics,
Institute of Laser Physical Research

Email: makarov@triniti.ru
Russia, Nizhny Novgorod Region, Sarov

K. Makarov

State Research Center of the Russian Federation Troitsk Institute for Innovation and Fusion Research

Autor responsável pela correspondência
Email: makarov@triniti.ru
Russia, Troitsk, Moscow

V. Ostrovskiy

State Research Center of the Russian Federation Troitsk Institute for Innovation and Fusion Research

Email: makarov@triniti.ru
Russia, Troitsk, Moscow

M. Pergament

State Research Center of the Russian Federation Troitsk Institute for Innovation and Fusion Research

Email: makarov@triniti.ru
Russia, Troitsk, Moscow

M. Putilin

State Research Center of the Russian Federation Troitsk Institute for Innovation and Fusion Research

Email: makarov@triniti.ru
Russia, Troitsk, Moscow

D. Sizmin

The Russian Federal Nuclear Center – All-Russian Scientific Research Institute of Experimental Physics,
Institute of Laser Physical Research

Email: makarov@triniti.ru
Russia, Nizhny Novgorod Region, Sarov

Bibliografia

  1. Bayramian A., Armstrong P., Ault E. et al. The Mercury Project: A High Average Power, Gas-Cooled Laser for Inertial Fusion Energy Development // Fusion Science and Technology. 2007. V. 52. P. 383.
  2. Mason P., Divoký M., Ertel K. et al. Kilowatt average power 100 J-level diode pumped solid state laser // Optica. 2017. V. 4 (4). P. 438–439.
  3. Haefner C.L., Bayramian A., Spinka T. et al. HAPLS: A Robust Driver for High Intensity Laser Matter Interactions Enabling Precision Science and Commercial Applications // The Review of Laser Engineering. 2018. V. 46 (3). P. 138–141.
  4. Chanteloup J.C., Albach D., Lucianetti A. et al. Multi kJ level Laser Concepts for HiPER Facility // J. Phys.: Conf. Ser. 2010. V. 244. P. 012010.
  5. Bayramian A., Aceves S., Anklam T. et al. Compact, Efficient Laser Systems Required for Laser Inertial Fusion Energy // Fusion Science and Technology. 2011. V. 60. P. 28.
  6. Albach D. Amplified Spontaneous Emission and Thermal Management on a High Average-Power Diode-Pumped Solid-State Laser – The Lucia Laser System / PhD Thesis, P.: École Polytechnique, 2010.
  7. Hamamoto K., Tokita S., Yoshida H. et al. Temperature-dependent absorption assessment of YAG ceramics as cladding material // Opt. Mater. Express. 2018. V. 8 (8). P. 2378–2386.
  8. Körner J., Jambunathan V., Hein J. et al. Spectroscopic characterization of Yb3+ doped laser materials at cryogenic temperatures // Appl. Phys. 2014. B 116. P. 75–81.
  9. Ricaud S., Papadopoulos D.N., Pellegrina A. et al. High-power diode-pumped cryogenically cooled Yb:CaF2 laser with extremely low quantum defect // Opt. Lett. 2011. V. 36 (9). P. 1602–1604.
  10. Handbook of solid-state lasers: Materials, systems and applications / Eds B. Denker, E. Shklovsky. Cam.: Woodhead Publishing, 2013.
  11. Hornung M., Liebetrau H., Keppler S. et al. 54 J pulses with 18 nm bandwidth from a diode-pumped chirped-pulse amplification laser system // Opt. Lett. 2016. V. 41. P. 5413–5416.
  12. Payne S.A., Chase L.L., Smith L.K. et al. Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+ // IEEE J. Quantum Electron. 1992. V. 28 (11). P. 2619–2630.
  13. Divoky M., Pilar Y., Hanus M., Navratil P., Sawicka-chyla M., De vido M., Phillips P.J., Ertel K., Butcher T., Fibrich M., Green Y.T., Koselja M., Preclikova Y., Kubat Y., Houzvicka Y., Rus B., Collier J., Lucianetti A., and Mocek T. Performance comparison of Yb:YAG ceramics and crystal gain material in a large-area, high-energy, high average–power diode-pumped laser and crystal gain material in a large-area, high-energy, high average–power diode-pumped laser // Optics Express 3636. 2020. V. 28. № 3 (February).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (884KB)
3.

Baixar (111KB)
4.

Baixar (451KB)
5.

Baixar (49KB)
6.

Baixar (157KB)
7.

Baixar (521KB)
8.

Baixar (488KB)
9.

Baixar (47KB)

Declaração de direitos autorais © С.Г. Гаранин, В.Н. Деркач, К.Н. Макаров, В.А. Островский, М.И. Пергамент, М.В. Путилин, Д.В. Сизмин, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies