SURFACE PLASMON-POLARITONS IN THE VO2-DIELECTRIC-METASURFACE STRUCTURE BASED ON GRAPHENE IN AN EXTERNAL MAGNETIC FIELD

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this paper presents the results of a study of the behavior of surface plasmon polaritons in the layered structure of VO2–SiO2-graphene-based hyperbolic metasurface under the influence of an external magnetic field before and at the beginning of the phase transition of vanadium dioxide. As a result of calculations, it is shown how the Isofrequency contour of surface plasmons changes taking into account the different direction of the external magnetic field. It is also shown how an external magnetic field affects the direction of static magnetization caused by the inverse Faraday effect. This work can offer additional ways to control the behavior of surface plasmons, as well as become the basis for the study of new self-adjusting structures.

Sobre autores

M. Usik

Chelyabinsk State University

Autor responsável pela correspondência
Email: usikmo95@gmail.com
Russia, Chelyabinsk

D. Kuzmin

Chelyabinsk State University

Autor responsável pela correspondência
Email: kuzminda89@gmail.com
Russia, Chelyabinsk

I. Bychkov

Chelyabinsk State University

Autor responsável pela correspondência
Email: bychkov@csu.ru
Russia, Chelyabinsk

A. Bugaev

Kotelnikov Institute of Radio-Engineering and Electronics of Russian Academy of Sciences

Autor responsável pela correspondência
Email: bugaev@cplire.ru
Russia, Moscow

V. Shavrov

Kotelnikov Institute of Radio-Engineering and Electronics of Russian Academy of Sciences

Autor responsável pela correspondência
Email: shavrov@cplire.ru
Russia, Moscow

Bibliografia

  1. Peterseim T., Dressel M., Dietrich M., and Polity A. Optical properties of VO2 films at the phase transition: Influence of substrate and electronic correlations // J. Appl. Physics. 2016. V. 120. P. 075102.
  2. Koledov V.V., Shavrov V.G., Shahmirzadi N.V., Pakizeh T., Kamantsev A.P., Kalenov D.S., Parkhomenko M.P., von Gratowski S.V., Irzhak A.V., Serdyuk V.M., Titovitsky J.A., Komlev A.A., Komlev A.E., Kuzmin D.A., Bychkov I.V., Yupapin P. Interaction of electromagnetic waves with VO2 nanoparticles and films in optical and millimetre wave ranges: Prospective for nano-photonics, nano-antennas, and sensors // IOP Conf. Series: Journal of Physics: Conference Series. 2018. V. 1092. P. 012108.
  3. Бычков И.В., Кузьмин Д.А., Толкачев В.А., Каман-цев А.П., Коледов В.В., Шавров В.Г. Дифракция плоской электромагнитной волны на микрошаре из VO2 в области фазового перехода // Физика твердого тела. 2020. Т. 62. № 6. С. 885–889.
  4. Kamantsev A.P., Koledov V.V., Shavrov V.G., Kalenov D.S., Parkhomenko M.P., von Gratowski S.V., Shahmir-zadi N.V., Pakizeh T., Irzhak A.V., Serdyuk V.M., Titovitsky J.A., Novoselova I.P., Komlev A.A., Komlev A.E., Kuzmin D.A., Bychkov I.V. Interaction of Optical and EHF Waves With VO2 Nanosized Films and Particles // IEEE J. Electromagnetics, RF, and Microwaves in Medicine and Biology. 2019. V. 3. № 1. P. 17–24.
  5. Lysenko S., Vikhnin V., Rua A., Fernandez F., and Liu H. Critical behavior and size effects in light-induced transition of nanostructured VO2 films // Physical Review B. 2010. V. 82. P. 205425.
  6. Chen C., Wang R., Shang L., and Guo C. Gate-field-induced phase transitions in VO2: monoclinic metal phase separation and switchable infrared reflections // Appl. Physics Letters. 2008. V. 93. P. 171101.
  7. Rini M., Cavalleri A., Schoenlein R.W., López R., Feldman L.C., Haglund R.F., Boatner L.A., and Haynes T.E. Photoinduced phase transition in VO2 nanocrystals: ultrafast control of surface-plasmon resonance // Optics Letters. 2005. V. 30. P. 558.
  8. Othman M.A.K., Guclu C., and Capolino F. Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption // Optics Express. 2013. V. 21. P. 7614.
  9. Gomez-Diaz J.S., Tymchenko M., and Alù A. Hyperbolic Plasmons and Topological Transitions Over Uniaxial Metasurfaces // Physical Rview Letters. 2015. V. 114. P. 233901.
  10. Gomez-Diaz J.S., Alu A. Flatland Optics with Hyperbolic Metasurfaces // ACS Photonics. 2016. V. 3. P. 2211.
  11. LeBlanc S.J., McClanahan M.R., Jones M., Moyer P.J. Enhancement of Multiphoton Emission from Single CdSe Quantum Dots Coupled to Gold Films // Nano Letters. 2013. V. 13. P. 1662.
  12. Razdolski I., Makarov D., Schmidt O.G., Kirilyuk A., Theo Rasing T., Temnov V.V. Nonlinear Surface Magnetoplasmonics in Kretschmann Multilayers // ACS Photonics. 2016. V. 3. P. 179.
  13. Андреев В.Н., Климов В.А. Электропроводимость полупроводниковой фазы в монокристаллах диоксида ванадия // Физика твердого тела. 2007. Т. 49. С. 2146.
  14. Zilbersztejn A., Mott N.F. Metal-insulator transition in vanadium dioxide // Physical Review B. 1975. V. 11. P. 4383.
  15. Bychkov I.V., Kuzmin D.A., Tolkachev V.A., Plaksin P.S., Shavrov V.G. Plasmon mediated inverse Faraday effect in a graphene–dielectric–metal structure // Optics Letters. 2018. V. 43. P. 26.
  16. Gomez-Diaz J.S., Tymchenko M., Alù A. Hyperbolic metasurfaces: surface plasmons, light-matter interactions, and physical implementation using graphene strips // Optical Material Express. 2015. V. 5. № 10. P. 2313.
  17. Falkovsky L.A. Optical Properties of Graphene and IV–VI Semi-conductors // Phys-Usp. 2008. V. 51. P. 887.
  18. Thomas M., Chain E.E. Optical properties and electron energy-loss diagnostics of vanadium dioxide thin films // Thin Solid Films. 1991. V. 204. P. 487.
  19. Masato Tazawa, Ping Jin, and Sakae Tanemura. Optical constants of V1–xWxO2 films // Applied Optics. 1998. V. 37. P. 1858.
  20. Kuzmin D.A., Bychkov I.V., Shavrov V.G., Temnov V.V., Lee H.I., Mok J. Plasmonically induced magnetic field in graphene-coated nanowires // Optics Letters. 2016. V. 41. P. 396.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (234KB)
3.

Baixar (116KB)
4.

Baixar (83KB)
5.

Baixar (1MB)
6.

Baixar (157KB)
7.

Baixar (346KB)
8.

Baixar (214KB)
9.

Baixar (317KB)

Declaração de direitos autorais © М.О. Усик, Д.А. Кузьмин, И.В. Бычков, А.С. Бугаев, В.Г. Шавров, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies