NECESSARY CONDITIONS FOR THE EXISTENCE OF SPACECRAFT IN CLOSED ULTRA-LOW ORBITS

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The problem of spacecraft stabilization in ultra-low (120–250 km for the Earth) orbits with the help of air-breathing electric propulsion (ABEP), which uses the gases of the surrounding atmosphere as a propellant, is considered. Qualitative differences of ABEP from traditional electric propulsion are emphasized and, on the basis of the fundamental laws of mechanics and electrodynamics, the necessary conditions for the existence of spacecraft with ABEP in closed ultra-low orbits are substantiated.

Авторлар туралы

A. Filatyev

Lomonosov Moscow State University; Moscow Aviation Institute

Хат алмасуға жауапты Автор.
Email: filatyev@yandex.ru
Russia, Moscow; Russia, Moscow

A. Golikov

Lomonosov Moscow State University; Central Aerohydodynamic Institute

Email: filatyev@yandex.ru
Russia, Moscow; Russia, Moscow Region, Zhukovsky

Әдебиет тізімі

  1. Crisp N.H., et al. The benefits of very low earth orbit for earth observation missions // Progress in Aerospace Sciences. 2020. V. 117. № 100169. P. 1–18. https://doi.org/10.1016/j.paerosci.2020.100619
  2. Tisaev M., Ferrato E., Giannetti V., Paissoni C., Baresi N., Lucca Fabris A., Andreussi T. Air-breathing electric propulsion: Flight envelope identification and development of control for long-term orbital stability // Acta Astronautica. 2022. V. 191. P. 374–393. https://doi.org/10.1016/j.actaastro.2021.11.011
  3. Romano F., et al. Intake design for an Atmosphere-Breathing Electric Propulsion System (ABEP) // Acta Astronautica. 2021. V. 187. P. 225–235. https://doi.org/10.1016/j.actaastro.2021.06.033
  4. Golikov A.A., Filatyev A.S. Integrated optimization of trajectories and layout parameters of spacecraft with air-breathing electric propulsion // Acta Astronautica. 2022. V. 193. P. 644–652. https://doi.org/10.1016/j.actaastro.2021.06.052
  5. Bertolucci G., Barato F., Toson E., Pavarin D. Impact of propulsion system characteristics on the potential for cost reduction of earth observation missions at very low altitudes // Acta Astronautica. 2020. V. 176. P. 173–191. https://doi.org/10.1016/j.actaastro.2020.06.018
  6. Somma G.L., Lewis H.G., Colombo C. Sensitivity analysis of launch activities in Low Earth Orbit // Acta Astronautica. 2019. V. 158. P. 129–139. https://doi.org/10.1016/j.actaastro.2018.05.043
  7. Чернышев С.Л., Локтионов Е.Ю., Сагалаков А.Э., Скворцов В.В., Филатьев А.С., Успенский А.А. О перспективах инфракрасных лазеров в воздушных электрореактивных двигателях // Доклады РАН. Физика, технические науки. 2021. Т. 501. С. 19–22. https://doi.org/10.31857/S2686740021060079
  8. Romano F., et al. RF Helicon-based Inductive Plasma Thruster (IPT) Design for an Atmosphere-Breathing Electric Propulsion system (ABEP) // Acta Astronautica. 2020. V. 176. P. 476–483. https://doi.org/10.1016/j.actaastro.2020.07.008
  9. Goebel D.M., Katz I. Fundamentals of Electric Propulsion: Ion and Hall Thrusters. John Wiley & Sons, Inc., Hoboken, NJ, USA, 2008. https://doi.org/10.1002/9780470436448
  10. Filatyev A.S., Golikov A.A., Nosachev L.V., Padalitsa D.I., Skvortsov V.V. Spacecraft with air-breathing electric propulsion as the future ultra-speed aircraft / 71th International Astronautical Congress. The CyberSpace Edition. 01–05 October 2020. IAC-20-C4.6.8.
  11. Fujita K. Air intake performance of air breathing ion engines // J. of the Japan Society for Aeronautical and Space Sciences. 2004. V. 52. № 610. P. 514–521. https://doi.org/10.2322/jjsass.52.514
  12. Barral S., Cifali G., Albertoni R., Andrenucci M., Walpot L. Conceptual Design of an Air-Breathing Electric Propulsion System / Joint Conference of 30th International Symposium on Space Technology and Science, 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium. Hyogo-Kobe, Japan. July 4–10. 2015. IEPC-2015-271/ISTS-2015-b-271.
  13. Space environment (natural and artificial) – Earth upper atmosphere. ISO/FDIS 14222. International Organisation for Standardization. Geneva, Switzerland. 2013. 38 p.
  14. Маров М.Я., Филатьев А.С. Комплексные исследования электрореактивных двигателей при полетах в ионосфере Земли: К 50-летию Государственной программы “Янтарь” // Космические исследования. 2018. Т. 56. № 2. С. 137–144. https://doi.org/10.7868/S0023420618020061
  15. Binder T., Boldini P., Romano F., Herdrich G., Fasoulas S. Transmission probabilities of rarefied flows in the application of atmosphere-breathing electric propulsion / AIP Conference Proc. 2016. V. 1786. № 190011. https://doi.org/10.1063/1.4967689
  16. Romano F., Binder T., Herdrich G., Fasoulas S., Schönherr T. Air-Intake Design Investigation for an Air-Breathing Electric Propulsion System / Joint Conference of 30th International Symposium on Space Technology and Science, 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium. Hyogo-Kobe, Japan. July 4–10. 2015. IEPC-2015-269/ISTS-2015-b-269.
  17. Filatyev A.S., Erofeev A.I., Nikiforov A.P., Golikov A.A., Yanova O.V. Comparative evaluation of the applicability of electrical ramjets / The 58th Israel Annual Conference on Aerospace Science. WeL1T4.3. Tel-Aviv & Haifa. Israel. 14–15 March 2018. P. 503–519.
  18. Prieto D.M., Graziano B.P., Roberts P.C.E. Spacecraft drag modelling // Progress in Aerospace Sciences. 2014. V. 64. P. 56–65. https://doi.org/10.1016/j.paerosci.2013.09.001

Қосымша файлдар


© А.С. Филатьев, А.А. Голиков, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>