COMPARATIVE ANALYSIS OF THE DARCY AND BRINKMAN APPROXIMATIONS FOR THE TRANSITION TO INSTABILITY IN A POROUS MEDIUM

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We studied the stability of the evaporation front in a porous media. To describe the flow, the generalized Brinkman equation is used. Comparison of the obtained results with the results found within the framework of the Darcy approximation is presented. It is shown, that the use of the Brinkman approximation eliminates the unboundedness of the perturbation growth rate at small scales arising in the case of Darcy’s law. Interface becomes more stable, and in the case of instability the most unstable mode corresponds to the finite value of the wave number.

About the authors

A. T. Il’ichev

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Author for correspondence.
Email: ilichev@mi.ras.ru
Russia, Moscow

G. G. Tsypkin

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Author for correspondence.
Email: tsypkin@ipmnet.ru
Russia, Moscow

References

  1. Saffman P.G., Taylor G.I. The Penetration of a Fluid into a Porous Medium or Hele-Shaw Cell Containing a More Viscous Liquid // Proc. R. Soc. London, 1958. A 245. P. 312–329.
  2. Rose D.A., Konukcul F., Gowing J.W. Aust. J. Hele-Shaw Cell Containing a More Viscous Liquid // Soil Res. 2005. V. 43. P. 565–573.
  3. Il’ichev A.T., Tsypkin G.G., Pritchard D.T., Richardson C.N. Instability of the salinity profile during the evaporation of saline groundwater // J. Fluid Mech. 2008. V. 614. P. 87–104.
  4. Schubert G., Straus J.M. Gravitational stability of water over steam in vapor-dominated geothermal system // J. Geophys. Res. 1980. V. 85. P. 6505–6512.
  5. Tsypkin G.G., Il’ichev A.T. Gravitational stability of the water-vapor phase transition interface in geothermal systems // Transport in porous media. 2004. V. 55. P. 183–199.
  6. Khan Z.H., Pritchard D. Liquid-vapour fronts in a porous media: multiplicity and stability of front positions // Int. J. Heat Mass Transfer. 2013. V. 61. P. 1–17.
  7. Khan Z.H., Pritchard D. Anomaly of spontaneous transition to instability of liquid–vapour front in a porous medium // Int. J. Heat Mass Transfer. 2015. V. 84. P. 448–455.
  8. Shargatov V.A., Il’ichev A.T., Tsypkin G.G. Dynamics and stability of moving fronts of water evaporation in a porous medium // Int. J. Heat and Mass Transfer. 2015. V. 83. P. 552–561.
  9. Цыпкин Г.Г., Ильичев А.Т. Жесткий переход к неустойчивости Релея–Тейлора поверхности раздела в пористой среде // ДАН. 2006. Т. 57. № 9. С. 523–527.
  10. Il’ichev A.T., Tsypkin G.G. Catastrophic transition to instability of evaporation front in a porous medium // Eur. J. Mech. B/Fluids. 2008. V. 25. P. 665–677.
  11. Ochoa-Tapia J.A., Whitaker S. Momentum transfer at the boundary between a porous medium and a homogeneous fluid-I. Theoretical development // Int. J. Heat Mass Transfer. 1995. V. 38. P. 2635–2646.
  12. Ochoa-Tapia J.A., Whitaker S. Momentum transfer at the boundary between a porous medium and a homogeneous fluid-II. Comparison with experiment // Int. J. Heat Mass Transfer. 1995. V. 38. P. 2647–2655.
  13. Вукалович М.П. Термодинамические свойства воды и водяного пара. М.: Машгиз, 1955. 92 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (186KB)
3.

Download (49KB)
4.

Download (69KB)

Copyright (c) 2023 А.Т. Ильичев, Г.Г. Цыпкин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies