The global process of eutrophication and its features in Arctic lakes as a consequence of climate warming

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

An analysis of the problem of water bodies eutrophication as a global process is presented. The volumes increasing use of nitrogen and phosphorus on a planetary scale are shown, the dispersion of which leads to an increase in the content of nutrients in lakes and rivers. The results of original studies of remote lakes in the Arctic zone are presented, which showed an increase in the concentrations of nutrients in lakes in recent decades. A tendency has been revealed for an increase in the contents of nitrogen and phosphorus, as well as organic matter in lake waters, even in the absence of anthropogenic influence. It has been established that an increase in temperature and climate warming in the Arctic regions exert the main influence on the increase in the content of nutrients and the trophic status of lakes.

全文:

受限制的访问

作者简介

T. Moiseenko

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: moiseenko.ti@gmail.com

Corresponding member of the RAS

俄罗斯联邦, Moscow

M. Bazova

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: moiseenko.ti@gmail.com
俄罗斯联邦, Moscow

参考

  1. Abid A. A., Gill S. S. Eutrophication: Causes, Consequences and Control. Volume 2. Springer Dordrecht Heidelberg London New York. 2014. 262 pp.
  2. Zhang X., Davidson E. A., Zou T., Lassaletta L., Quan Z., Li T., Zhang W. Quantifying nutrient budgets for sustainable nutrient management // Global Biogeochemical Cycles. 2020. 34. e2018GB006060.
  3. Henderson-Sellers B., Markland H. R. Decaying Lakes. The Origin and Control of Cultural Eutrophication. 1990. L.: Gidrometeoizdat. 280 p.
  4. Lepori F., Roberts. J. J. Effects of internal phosphorus loadings and food-web structure on the recovery of a deep lake from eutrophication. // J. Great Lakes Res. 2017. V. 43. № 2. P. 255–264.
  5. Deng J., Qin B., Sarvala J., Salmaso N., Zhu G., Ventelä A. M., Zhang Y., Gao G., Nurminen L., Kirkkala T., Tarvainen M., Vuorio K. Phytoplankton assemblages respond differently to climate warming and eutrophication: A case study from Pyhäjärvi and Taihu. // J. of Great Lakes Research. 2016. V. 42 № 2. P. 386–396.
  6. Моисеенко Т. И., Базова М. М., Дину М. И., Гашкина Н. А., Кудрявцева Л. П. Изменение геохимии вод суши в условиях потепления климата и снижения выпадений кислот: восстановление или эволюция озер? // Геохимия. 2022. Т. 67. № 2. С. 668–685.
  7. Great Lake Ecosystem Report. 2007. Available online: http://www.epa.gov/glnpo/ rptcong. (accessed on 9 March 2006).
  8. Moiseenko T. I., Sharov A. Large Russian lakes Ladoga, Onega, and Imandra under strong pollution and in the period of revitalization: a review // Geosciences. 2019. V. 9. № 12. P. 492.
  9. De Wit H. A., Stoddard J. L., Monteith D. T., James E.S., Austnes K., Couture S., Fölster J., Higgins S. N., Houle D., Hruška J., Kr ́am P., Koṕacek J., Paterson A. M., Herman S. V., Vuorenmaa V. D., Evans C. D. Cleaner air reveals growing influence of climate on dissolved organic carbon trends in northern headwaters // Environ. Res. Lett. 2021. V. 16. P. 104009.
  10. Moiseenko T. I., Bazova M. M., Gashkina N. A. Development of Lake from Acidification to Eutrophication in the Arctic Region under Reduced Acid Deposition and Climate Warming // Water. 2022. V. 14. 3467.
  11. Stoddard J. L., Van Sickle J., Herlihy A. T., Brahney J., Paul-sen S.,Peck D. V., Mitchell R., Pollard A. I. Continental-scale increase in lake and stream phosphorus: Are oligotrophic systems disappearing in the United States? // Environ. Sci. Technol. 2016. V. 50. P. 3409–3415.
  12. CliC/AMAP/IASC. The Arctic Freshwater System in a Changing Climate. WCRP Climate and Cryosphere (CliC) Project, Arctic Monitoring and Assessment Programme (AMAP). 2016. International Arctic Science Committee (IASC).
  13. Моисеенко Т. И., Базова М. М., Льюмменс Е. О. Биогеохимические изменения арктических озер в условиях потепления климата: региональные особенности // Геохимия. 2023. Т. 68. № 4. С. 409–423.
  14. Архив погоды: Мурманская область. 2019. Справочно-информационный портал “Погода и климат” (http://www.pogodaiklimat.ru/archive.php?id=ru®ion=51).
  15. Бульон В. В. Биотический поток вещества и энергии в системе “озеро и его водосбор” // Успехи современной биологии. 2018. Т. 138. № 5. С. 503–515.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Schematic map of the points of the studied lakes of the Kola region: 1 – tundra, 2 – forest tundra, 3 – north taiga zones.

下载 (240KB)
3. Fig. 2. Average monthly temperatures of the surface air layer during the open water period, T (°C) [14].

下载 (242KB)
4. Fig. 3. The number of lakes (n) with Ptot concentrations < 10 mcg/l in tundra, forest tundra and taiga in different periods: 1990-2000 and 2010-2018.

下载 (79KB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##