The global process of eutrophication and its features in Arctic lakes as a consequence of climate warming

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

An analysis of the problem of water bodies eutrophication as a global process is presented. The volumes increasing use of nitrogen and phosphorus on a planetary scale are shown, the dispersion of which leads to an increase in the content of nutrients in lakes and rivers. The results of original studies of remote lakes in the Arctic zone are presented, which showed an increase in the concentrations of nutrients in lakes in recent decades. A tendency has been revealed for an increase in the contents of nitrogen and phosphorus, as well as organic matter in lake waters, even in the absence of anthropogenic influence. It has been established that an increase in temperature and climate warming in the Arctic regions exert the main influence on the increase in the content of nutrients and the trophic status of lakes.

Texto integral

Acesso é fechado

Sobre autores

T. Moiseenko

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: moiseenko.ti@gmail.com

Corresponding member of the RAS

Rússia, Moscow

M. Bazova

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: moiseenko.ti@gmail.com
Rússia, Moscow

Bibliografia

  1. Abid A. A., Gill S. S. Eutrophication: Causes, Consequences and Control. Volume 2. Springer Dordrecht Heidelberg London New York. 2014. 262 pp.
  2. Zhang X., Davidson E. A., Zou T., Lassaletta L., Quan Z., Li T., Zhang W. Quantifying nutrient budgets for sustainable nutrient management // Global Biogeochemical Cycles. 2020. 34. e2018GB006060.
  3. Henderson-Sellers B., Markland H. R. Decaying Lakes. The Origin and Control of Cultural Eutrophication. 1990. L.: Gidrometeoizdat. 280 p.
  4. Lepori F., Roberts. J. J. Effects of internal phosphorus loadings and food-web structure on the recovery of a deep lake from eutrophication. // J. Great Lakes Res. 2017. V. 43. № 2. P. 255–264.
  5. Deng J., Qin B., Sarvala J., Salmaso N., Zhu G., Ventelä A. M., Zhang Y., Gao G., Nurminen L., Kirkkala T., Tarvainen M., Vuorio K. Phytoplankton assemblages respond differently to climate warming and eutrophication: A case study from Pyhäjärvi and Taihu. // J. of Great Lakes Research. 2016. V. 42 № 2. P. 386–396.
  6. Моисеенко Т. И., Базова М. М., Дину М. И., Гашкина Н. А., Кудрявцева Л. П. Изменение геохимии вод суши в условиях потепления климата и снижения выпадений кислот: восстановление или эволюция озер? // Геохимия. 2022. Т. 67. № 2. С. 668–685.
  7. Great Lake Ecosystem Report. 2007. Available online: http://www.epa.gov/glnpo/ rptcong. (accessed on 9 March 2006).
  8. Moiseenko T. I., Sharov A. Large Russian lakes Ladoga, Onega, and Imandra under strong pollution and in the period of revitalization: a review // Geosciences. 2019. V. 9. № 12. P. 492.
  9. De Wit H. A., Stoddard J. L., Monteith D. T., James E.S., Austnes K., Couture S., Fölster J., Higgins S. N., Houle D., Hruška J., Kr ́am P., Koṕacek J., Paterson A. M., Herman S. V., Vuorenmaa V. D., Evans C. D. Cleaner air reveals growing influence of climate on dissolved organic carbon trends in northern headwaters // Environ. Res. Lett. 2021. V. 16. P. 104009.
  10. Moiseenko T. I., Bazova M. M., Gashkina N. A. Development of Lake from Acidification to Eutrophication in the Arctic Region under Reduced Acid Deposition and Climate Warming // Water. 2022. V. 14. 3467.
  11. Stoddard J. L., Van Sickle J., Herlihy A. T., Brahney J., Paul-sen S.,Peck D. V., Mitchell R., Pollard A. I. Continental-scale increase in lake and stream phosphorus: Are oligotrophic systems disappearing in the United States? // Environ. Sci. Technol. 2016. V. 50. P. 3409–3415.
  12. CliC/AMAP/IASC. The Arctic Freshwater System in a Changing Climate. WCRP Climate and Cryosphere (CliC) Project, Arctic Monitoring and Assessment Programme (AMAP). 2016. International Arctic Science Committee (IASC).
  13. Моисеенко Т. И., Базова М. М., Льюмменс Е. О. Биогеохимические изменения арктических озер в условиях потепления климата: региональные особенности // Геохимия. 2023. Т. 68. № 4. С. 409–423.
  14. Архив погоды: Мурманская область. 2019. Справочно-информационный портал “Погода и климат” (http://www.pogodaiklimat.ru/archive.php?id=ru®ion=51).
  15. Бульон В. В. Биотический поток вещества и энергии в системе “озеро и его водосбор” // Успехи современной биологии. 2018. Т. 138. № 5. С. 503–515.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic map of the points of the studied lakes of the Kola region: 1 – tundra, 2 – forest tundra, 3 – north taiga zones.

Baixar (240KB)
3. Fig. 2. Average monthly temperatures of the surface air layer during the open water period, T (°C) [14].

Baixar (242KB)
4. Fig. 3. The number of lakes (n) with Ptot concentrations < 10 mcg/l in tundra, forest tundra and taiga in different periods: 1990-2000 and 2010-2018.

Baixar (79KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies