Constraining the parameters of the Andrade rheological model in Earth’s mantle based on the Love numbers of the М2 lunar semidiurnal tide

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

For the first time we showed that the often-used approximation of the Andrade rheology with only one parameter is oversimplified and might lead to incorrect conclusions when studying the internal structure of the planets of the Solar System. Instead, we used an Andrade rheology with two empirical parameters: α and ζ. Earth’s viscoelastic Love numbers for the principal lunar semidiurnal tide M2 were computed for two viscosity profiles and for 16100 different combinations of α and ζ values. The comparison of the computed Love numbers with its measured values allowed us to constrain the set of values of both parameters that successfully describe the rheological properties of Earth’s mantle.

Sobre autores

D. Amorim

Moscow Institute of Physics and Technology

Autor responsável pela correspondência
Email: amorim.dargilan@gmail.com
Rússia, Dolgoprudny

T. Gudkova

Sсhmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: gudkova@ifz.ru
Rússia, Moscow

Bibliografia

  1. Dumoulin C., Tobie G., Verhoeven O., et al. Tidal constraints on the interior of Venus // Journal of Geophysical Research: Planets. 2017. V. 122(6). P. 1338–1352.
  2. Steinbrugge G., Padovan S., Hussmann H., et al. Viscoelastic tides of Mercury and the determination of its inner core size // Journal of Geophysical Research: Planets. 2018. V. 123(10). P. 2760–2772.
  3. Bagheri A., Khan A., Al-Attar D., et al. Tidal response of mars constrained from laboratory-based viscoelastic dissipation models and geophysical data // Journal of Geophysical Research: Planets. 2019. V. 124(11). P. 2703–2727.
  4. Gudkova T., Zharkov V. Models of the internal structure of the Earth-like Venus // Solar System Research. 2020. V. 54. P. 20–27.
  5. Castillo-Rogez J. C., Efroimsky M., Lainey V. The tidal history of Iapetus: Spin dynamics in the light of a refined dissipation model // Journal of Geophysical Research: Planets. 2011. V. 116 (E9).
  6. Jackson I., Fitz Gerald J. D., Faul U. H., Tan B. H. Grain-size-sensitive seismic wave attenuation in polycrystalline olivine // Journal of Geophysical Research: Solid Earth. 2002. V. 107(B12). P.ECV-5.
  7. Efroimsky M. Tidal dissipation compared to seismic dissipation: In small bodies, earths, and super-earths // The Astrophysical Journal. 2012. V. 746(2). P. 150.
  8. Молоденский С. М. Приливы и нутация Земли. 1. Модели Земли с неупругой мантией и однородным невязким жидким ядром // Астрон. вестник. 2004. Т. 38 (6). С. 542–558.
  9. Молоденский С. М. Сравнение моделей неупругой Земли, построенных по астрономическим и приливным гравиметрическим данным // Физика Земли. 2006. Т. 7. С. 12–16.
  10. Fontaine F. R., Ildefonse B., Bagdassarov N. S. Temperature dependence of shear wave attenuation in partially molten gabbronorite at seismic frequencies // Geophysical Journal International. 2005. V. 163(3). P. 1025–1038.
  11. Kang K., Wahr J., Heflin M., Desai S. Stacking global gps verticals and horizontals to solve for the fortnightly and monthly body tides: Implications for mantle anelasticity // Journal of Geophysical Research: Solid Earth. 2015. V. 120(3). P. 1787–1803.
  12. Ding H., Chen Z., Pan Y., Zou C. The complex love numbers of long-period zonal tides retrieved from global gps displacements: Applications for determining mantle anelasticity // J. Geophys. Res.: Solid earth. 2021. V. 126 (9). P.e2021JB022380.
  13. Nakada M., Okuno J., Yokoyama Y. Total meltwater volume since the last glacial maximum and viscosity structure of earth’s mantle inferred from relative sea level changes at barbados and bonaparte gulf and gia-induced j2 // Geophysical Journal International. 2016. V. 204(2). P. 1237–1253.
  14. Reusen J. M., Root B. C., Szwillus W., Fullea J., van der Wal W. Long wavelength gravity field constraint on the lower mantle viscosity in North America // J. Geophys. Res.: Solid earth. 2020. V. 125 (12). P.e2020JB020484.
  15. Petit G., Luzum B. Iers technical note no. 36, iers conventions (2010). International Earth Rotation and Reference Systems Service: Frankfurt, Germany. 2010.

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies