Evolution of the stratospheric polar vortex activity over 85 years

  • Авторлар: Zuev V.V.1, Savelieva E.S.1
  • Мекемелер:
    1. Institute of Monitoring of Climate and Ecological Systems SB RAS
  • Шығарылым: Том 526, № 1 (2026)
  • Бөлім: ATMOSPHERIC AND HYDROSPHERIC PHYSICS
  • ##submission.dateSubmitted##: 18.06.2025
  • ##submission.dateAccepted##: 15.09.2025
  • ##submission.datePublished##: 16.10.2025
  • URL: https://journals.rcsi.science/2686-7397/article/view/297066
  • ID: 297066

Дәйексөз келтіру

Толық мәтін

Аннотация

The polar vortices are large-scale objects of stratospheric circulation that have a significant impact not only on the temperature regime and ozone content in the polar stratosphere, but also on the weather and climate of high and middle latitudes. Using the ERA5 reanalysis data for 1940–2024, we identified defining trends in polar vortex dynamics over 85 years: increasing variability of the Arctic vortex and gradual strengthening of the Antarctic vortex. In the dynamics of the Arctic polar vortex, in contrast to the Antarctic one, over the 85-year period an increase in the manifestation of inconsistency can be observed, both in the vertical dynamics of the vortex and in its intra-seasonal changes. The increase in the variability of the Arctic polar vortex over the 85-year period is most noticeable in the second half of winter (in January and February), which is associated with a gradual weakening of the vortex during this period and an increase in the frequency of episodic breakdown of the vortex in different years. Over the 85-year period, there has been a gradual strengthening of the Antarctic polar vortex, most intense during the winter (from June to August) in the upper stratosphere and from mid-spring to early summer (from October to December) in the lower stratosphere. In addition, we showed that over the past 85 years there has been a significant increase in the lifetime of the Antarctic vortex, especially in the middle and lower stratosphere.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Vladimir Zuev

Institute of Monitoring of Climate and Ecological Systems SB RAS

Хат алмасуға жауапты Автор.
Email: vzuev@list.ru
ORCID iD: 0000-0002-2351-8924
SPIN-код: 4294-1790
Scopus Author ID: 56597035100
ResearcherId: E-5470-2014

Corresponding Member of the Russian Academy of Sciences, Doctor of Physical and Mathematical Sciences, Professor, Chief Researcher, Head of Laboratory, Laboratory of Middle Atmosphere Physics

Ресей

Ekaterina Savelieva

Institute of Monitoring of Climate and Ecological Systems SB RAS

Email: esav.pv@gmail.com
ORCID iD: 0000-0002-6560-7386
SPIN-код: 2188-2170
Scopus Author ID: 55502121400
ResearcherId: E-4782-2014

Doctor of Physical and Mathematical Sciences, Leading Researcher, Laboratory of Middle Atmosphere Physics

Ресей, 634055, Tomsk, Akademichesky Prospekt, 10/3

Әдебиет тізімі

  1. Waugh D.W., Sobel A.H., Polvani L.M. What is the polar vortex and how does it influence weather? // Bull. Amer. Meteor. Soc. 2017. V. 98, N 1. P. 37–44.
  2. Waugh D.W., Randel W.J., Pawson S. et al. Persistence of the lower stratospheric polar vortices // J. Geophys. Res. 1999. V. 104, N 22. P. 27191–27201.
  3. Manney G.L., Zurek R.W., O'Neill A., Swinbank R. On the motion of air through the stratospheric polar vortex // J. Atmos. Sci. 1994. V. 51, N 20. P. 2973‒2994.
  4. Solomon S. Stratospheric ozone depletion: a review of concepts and history // Rev. Geophys. 1999. V. 37, N 3. P. 275–316.
  5. Newman P.A., Nash E.R., Rosenfield J.E. What controls the temperature of the Arctic stratosphere during the spring? // J. Geophys. Res. 2001. V. 106, N 17. P. 19999–20010.
  6. Finlayson-Pitts B.J., Pitts J.N. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. California: Academic Press, 2000. 969 p.
  7. Manney G.L., Santee M.L., Rex M. Unprecedented Arctic ozone loss in 2011 // Nature. 2011. V. 478, N 7370. P. 469–475.
  8. Newman P.A. Chemistry and dynamics of the Antarctic ozone hole. In: Polvani L.M., Sobel A.H., Waugh D.W. (Eds.), The Stratosphere: Dynamics, Transport, and Chemistry // Geophysical Monograph Series. 2010. V. 190. P. 157–171.
  9. Lim E.-P., Hendon H.H., Boschat G. et al. Australian hot and dry extremes induced by weakenings of the stratospheric polar vortex // Nat. Geosci. 2019. V. 12. P. 896–901.
  10. Kidston J., Scaife A.A., Hardiman S.C. et al. Stratospheric influence on tropospheric jet streams, storm tracks and surface weather // Nat. Geosci. 2015. V. 8, N 6. P. 433–440.
  11. Hersbach H., Bell B., Berrisford P. et al. The ERA5 global reanalysis // Q. J. Roy. Meteor. Soc. 2020. V. 146, N 730. P. 1999–2049.
  12. Holton J. An Introduction to Dynamic Meteorology. 4th Edition. – California: Academic Press, 2004. 535 p.
  13. Ageyeva V.Yu., Gruzdev A.N., Elokhov A.S. et al. Sudden stratospheric warmings: statistical characteristics and influence on NO2 and O3 total contents // Izv. Atmos. Oceanic Phys. 2017. V. 53, N 5. P. 477–486.
  14. Zuev V.V., Savelieva E.S., Maslennikova E.A. et al. Consequences of weakening the dynamic barrier of the Arctic polar vortex // Dokl. Earth Sci. 2024. V. 514, N 2. P. 401–409.
  15. Charlton A.J., O’Neill A., Lahoz W.A., Berrisford P. The splitting of the stratospheric polar vortex in the Southern Hemisphere, September 2002: Dynamical evolution // J. Atmos. Sci. 2005. V. 62, N 3. P. 590–602.
  16. Roy R., Kuttippurath J., Lefèvre F. et al. The sudden stratospheric warming and chemical ozone loss in the Antarctic winter 2019: comparison with the winters of 1988 and 2002 // Theor. Appl. Climatol. 2022. V. 149. P. 119–130.
  17. Zuev V.V., Savelieva E.S., Pavlinsky A.V., Sidorovski E.A. The unprecedented duration of the 2020 ozone depletion in the Antarctic // Dokl. Earth Sci. 2023. V. 509, N 1. P. 166–170.
  18. Zuev V.V., Savelieva E.S. Arctic polar vortex splitting in early January: The role of Arctic sea ice loss // J. Atmos. Sol.-Terr. Phys. 2019. V. 195. P. 105137.
  19. Sun L., Deser C., Simpson I., Sigmond M. Uncertainty in the winter tropospheric response to Arctic sea ice loss: The role of stratospheric polar vortex internal variability // J. Climate. 2022. V. 36, N 10. P. 3109–3130.
  20. Waugh D.W., Polvani L.M. Stratospheric polar vortices. In: Polvani L.M., Sobel A.H., Waugh D.W. (Eds.), The Stratosphere: Dynamics, Transport, and Chemistry // Geophysical Monograph Series. 2010. V. 190. P. 43–57.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».