Monitoring the baric modulation of gas concentration in the Baksan Neutrino Observatory tunnel in the Elbrus Region using a differential absorption lidar

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For the first time, concentrations of gases 12CO2,13CO2, СН4, Н2О and the dynamics of Earth degassing under the changing atmospheric pressure were remotely analyzed using a differential absorption lidar. To reduce the influence of external meteorological factors, the sensing was carried out in a dead-end tunnel of the Baksan Neutrino Observatory of the Institute for Nuclear Research of the Russian Academy of Sciences.

Full Text

Restricted Access

About the authors

S. M. Pershin

Prokhorov General Physics Institute of the Russian Academy of Sciences

Author for correspondence.
Email: pershin@kapella.gpi.ru
Russian Federation, Moscow

E. I. Gordeev

Institute of Volcanology and Seismology Far Eastern Branch of the Russian Academy of Sciences

Email: pershin@kapella.gpi.ru

Academician of the RAS

Russian Federation, Petropavlovsk-Kamchatsky

M. Ya. Grishin

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: pershin@kapella.gpi.ru
Russian Federation, Moscow

V. A. Zavozin

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: pershin@kapella.gpi.ru
Russian Federation, Moscow

V. S. Makarov

Space Research Institute of the Russian Academy of Sciences

Email: pershin@kapella.gpi.ru
Russian Federation, Moscow

N. N. Lednev

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: pershin@kapella.gpi.ru
Russian Federation, Moscow

Ya. Ya. Ponurovskiy

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: pershin@kapella.gpi.ru
Russian Federation, Moscow

D. B. Stavrovskii

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: pershin@kapella.gpi.ru
Russian Federation, Moscow

A. A. Ushakov

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: pershin@kapella.gpi.ru
Russian Federation, Moscow

V. V. Kazalov

Institute for Nuclear Research of the Russian Academy of Sciences

Email: pershin@kapella.gpi.ru
Russian Federation, Moscow

References

  1. Jamtveit B., Petley‐Ragan A., Incel S., Dunkel K. G., Aupart C., Austrheim H., Corfu F., Menegon L., Renard F. The Effects of Earthquakes and Fluids on the Metamorphism of the Lower Continental Crust // J. Geophys. Res. Solid Earth. 2019. 124. 7725– 7755. https://doi.org/10.1029/2018JB016461.
  2. Kerstel E., Gianfrani L. Advances in laser-based isotope ratio measurements: selected applications // Appl. Phys. 2008. B. 92. 439–449.
  3. Lucic G., Stix J., Wing B. Structural controls on the emission of magmatic carbon dioxide gas, Long Valley Caldera, USA // J. Geophys. Res. Solid Earth. 2015. 120. 2262–2278. https://doi.org/https://doi.org/10.1002/2014JB011760.
  4. Malowany K.S., Stix J., de Moor J. M., Chu K., Lacrampe-Couloume G., Sherwood B. Lollar, Carbon isotope systematics of Turrialba volcano, Costa Rica, using a portable cavity ring-down spectrometer // Geochemistry, Geophys. Geosystems. 2017. 18. 2769–2784. https://doi.org/https://doi.org/10.1002/2017GC006856.
  5. Queißer M., Burton M., Kazahaya R. Insights into geological processes with CO2 remote sensing – A review of technology and applications // Earth-Science Rev. 2019. 188. 389–426. https://doi.org/10.1016/j.earscirev.2018.11.016.
  6. Fiorani L., Colao F., Palucci A. Measurement of Mount Etna plume by CO2-laser-based lidar // Opt. Lett. 2009. 34. 800–802. https://doi.org/10.1364/OL.34.000800.
  7. Pisani G., Boselli A., Coltelli M., Leto G., Pica G., Scollo S., Spinelli N., Wang X. Lidar depolarization measurement of fresh volcanic ash from Mt. Etna, Italy // Atmos. Environ. 2012. 62. 34–40. https://doi.org/https://doi.org/10.1016/j.atmosenv.2012.08.015.
  8. Sliney D.H., Wolbarsht M. Safety with lasers and other optical sources: a comprehensive handbook. Springer Science & Business Media, New York, 2013. https://doi.org/10.1007/978-1-4899-3596-0.
  9. Pershin S.M., Sobisevich A. L., Grishin M. Y., Gravirov V. V., Zavozin V. A., Kuzminov V. V., Lednev V. N., Likhodeev D. V., Makarov V. S., Myasnikov A. V., Fedorov A. N. Volcanic activity monitoring by unique LIDAR based on a diode laser // Laser Phys. Lett. 2020. 17. 115607. https://doi.org/10.1088/1612-202X/abbedc.
  10. Pershin A.L., Sobisevich V. A., Zavozin M. Y., Grishin V. N., Lednev V. S., Makarov V. B., Petkov Y. Y., Ponurovskii A. N., Fedorov D. G. LIDAR Detection of Aerosols in the Tunnel above the Elbrus Volcano Chamber // Bull. Lebedev Phys. Inst. 2022. 49. 36– 41. https://doi.org/10.3103/S1068335622020063.
  11. Маловичко A.A., Бутырин П. Г., Верхоланцева Т. В., Верхоланцев Ф. Г., Шулаков Д. Ю. Результаты микросейсмических наблюдений на территории Баксанской Нейтринной Обсерватории / Современные Методы Обработки и Интерпретации Сейсмологических Данных. Материалы Седьмой Международной Сейсмологической Школы, 2015. С. 169–174.
  12. Gordon I.E., Rothman L. S., Hill C., Kochanov R. V., Tan Y., Bernath P. F., Birk M., Boudon V., Campargue A., Chance K. V., Drouin B. J., Flaud J.-M., Gamache R. R.,. Hodges J.T, Jacquemart D., Perevalov V. I., Perrin A., Shine K. P., Smith M.-A.H., Tennyson J., Toon G. C., Tran H., Tyuterev V. G., Barbe A., Császár A. G.,. Devi V.M, Furtenbacher T., Harrison J. J., Hartmann J.-M., Jolly A., Johnson T. J., Karman T., Kleiner I., Kyuberis A. A., Loos J., Lyulin O. M., Massie S. T., Mikhailenko S. N., Moazzen-Ahmadi N., Müller H. S.P., Naumenko O. V., Nikitin A. V., Polyansky O. L., Rey M., Rotger M., Sharpe S. W., Sung K., Starikova E., Tashkun S. A., Vander Auwera J., Wagner G., Wilzewski J., Wcisło P., Yu S., Zak E. J. The HITRAN2016 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transf. 2017. 203.3–69. https://doi.org/https://doi.org/10.1016/j.jqsrt.2017.06.038.
  13. Rizzo A.L., Jost H., Caracausi A., Paonita A., Liotta M., Martelli M. Real‐time measurements of the concentration and isotope composition of atmospheric and volcanic CO2 at Mount Etna (Italy) // Geophys. Res. Lett. 2014. 41. 2382–2389. https://doi.org/10.1002/2014GL059722.
  14. Nadezhdinskii A.I., Ponurovskii Y. Y. Diode laser spectrometer for high-precision measurements // Quantum Electron. 2019. 49. 613.
  15. Стенькин Ю.В., Алексеенко В. В., Игошин А. В., Кулешов Д. А., Левочкин К. Р., Степанов В. И., Сулаков В. П., Рулев В. В., Щеголев О. Б. Подземная физика и нелинейный задержанный барометрический эффект гамма-фона // Журнал Экспериментальной и Теоретической Физики. 2020. 158. 469–473. https://doi.org/10.31857/S0044451020090059.
  16. Etiope G., Martinelli G. Migration of carrier and trace gases in the geosphere: an overview // Phys. Earth Planet. Inter. 2002. 129. 185–204. https://doi.org/10.1016/S0031-9201(01)00292-8.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of a dead-end tunnel at the end of the auxiliary tunnel of the Baksan Neutrino Observatory.

Download (216KB)
3. Fig. 2. Block diagram of a differential absorption lidar based on near-infrared diode lasers for measuring gas concentrations: 1 – laser radiation unit, 2 – control unit, data reception and processing, 3 – receiving and transmitting optical system with fiber input, 4 – analytical signal detector, 5 – diode module laser, 6 – fiber splitter, 7 – comparison cuvette with Fabry-Perot interferometer, 8 – comparison signal detector, 9 – digital programmable module, 10 – DAC and ADC module, 11 – analog signal converter module, 12 – fiber optic cable.

Download (97KB)
4. Fig. 3. a) A general view of the differential absorption lidar receiving and transmitting unit, b) an electronic lidar control unit with a computer at the top, on the monitor of which examples of laser frequency tuning by changing the pump current are shown.

Download (265KB)
5. Fig. 4. Variations in atmospheric pressure, concentrations of gases CH4,12CO2 and 13CO2, H2O and the ratio 13CO2/12CO2.

Download (309KB)
6. Fig. 5. Examples of the “pumping effect” with pressure surges of 1.5 (a) and 3 (b) mmHg in the dead-end tunnel of the BNR in 2023: pressure change – pink line 1, CO2 concentration – green line 2, H2O concentration – blue line 3.

Download (302KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies