NUMERICAL THERMODYNAMIC MODEL OF THE FLUID SYSTEM H2O–LiCl–CaCl2 IN THE TEMPERATURE RANGE FROM –77 TO +50°C
- Authors: Misyura M.A.1, Bushmin S.A.1, Savva E.V.1
-
Affiliations:
- Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences
- Issue: Vol 525, No 1 (2025)
- Pages: 91–100
- Section: GEOCHEMISTRY
- Submitted: 26.12.2025
- Published: 15.11.2024
- URL: https://journals.rcsi.science/2686-7397/article/view/362862
- DOI: https://doi.org/10.7868/S303450652510106
- ID: 362862
Cite item
Abstract
About the authors
M. A. Misyura
Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences
Email: max.misyura94@gmail.com
St. Petersburg, Russia
S. A. Bushmin
Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences
Email: s.a.bushmin@ipgg.ru
St. Petersburg, Russia
E. V. Savva
Institute of Precambrian Geology and Geochronology, Russian Academy of SciencesSt. Petersburg, Russia
References
- Balaram V., Santosh M., Satyanarayanan M. et al. Lithium: A review of applications, occurrence, exploration, extraction, recycling, analysis, and environmental impact // Geoscience Frontiers. 2024. V. 15. 101868.
- Bowell R.J., Lagos L., Hoyos C.R. Classification and Characteristics of Natural Lithium Resources // Elements. 2020. V. 16. P. 259–264.
- Alexeev S.V., Alexeeva L.P., Vakhromeev A.G. Brines of the Siberian platform (Russia): Geochemistry and processing prospects // Applied Geochemistry. 2020. V. 117. 104588.
- Мисюра М.А., Бушмин С.А., Александрович О.А. и др. Термодинамическая модель системы H2O–LiCl–NaCl для исследования флюидных включений: Расчет по уравнениям Питцера // Доклады РАН. Науки о Земле. 2024. T. 519. № 1. C. 52–60.
- Pitzer K.S. Ion interaction approach: Theory and data correlation. Activity coefficients in electrolyte solutions. Ed. K.S. Pitzer. CRC Press. 1991. P. 75–153.
- Monnin C., Dubois M., Papaiconomou N. et al. Thermodynamics of the H2O+LiCl system // Journal of Chemical Engineering Data. 2002. V. 47. P. 1331–1336.
- Holmes H.F., Mesmer R.E. Thermodynamic properties of aqueous solutions of the alkali metal chlorides to 250°C // Journal of Physical Chemistry. 1983. V. 87. P. 1242–1255.
- Toner J.D., Catling D.C. A low-temperature thermodynamic model for the Na–K–Ca–Mg–Cl system incorporating new experimental heat capacities in KCl, MgCl2 and CaCl2 solutions // J. Chem. Eng. Data. 2017. V. 62. № 3. P. 995–1010.
- Lassin A., Andre L. A revised description of the binary CaCl2–H2O chemical system up to solution-mineral equilibria and temperatures of 250°C using Pitzer equations. Extension to the multicomponent HCl–LiCl–NaCl–KCl–MgCl2–CaCl2–H2O system // J. Chem. Thermodynamics. 2023. V. 176. 106927.
- Gibbard H.F., Scatchard G. Liquid-Vapor Equilibrium of Aqueous Lithium Chloride, from 25° to 100°C and from 1.0 to 18.5 Molal, and Related Properties // J. Chemical and Engineering Data. 1973. V. 18. № 3. P. 293–298.
- Spencer R.J., Moller N., Weare J.H. The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na–K–Ca–Mg–Cl–SO4–H2O system at temperatures below 25°C // Geochimica et Cosmochimica Acta. 1990. V. 54. P. 575–590.
- Moller N. The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na–K–Ca–Cl–SO4–H2O system, to high temperature and concentration // Geochimica et Cosmochimica Acta. 1988. V. 52. P. 821–837.
- Wang X., Zhao K., Guo Yafei et al. Experimental Determination and Thermodynamic Model of Solid–Liquid Equilibria in the Ternary System (LiCl + CaCl2 + H2O) at 273.15 K // J. Chem. Eng. Data. 2019. V. 64. № 1. P. 249–254.
- Zeng D., Xu W., Voigt W. et al. Thermodynamic study of the system (LiCl + CaCl2 +H2O) // J. Chem. Thermodynamics. 2008. V. 40. P. 1157–1165.
- Шевчук В.Г., Вайсфельд М.И. Система LiCl–MgCl2–CaCl2–H2O при 25°C // Журнал неорганической химии. 1967. T. XII. № 4. C. 1064–1068.
Supplementary files

