THE ROLE OF FLUORINE IN HYDROTHERMAL TRANSPORT OF TIN Sn(IV) FROM EXPERIMENTAL DATA

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The solubility of SnO2(cr) (cassiterite) in H2O-HF±NaF solutions was determined at 25 (1 bar) –250°C (P sat). Several experiments were carried out in HClO4 and NaOH solutions at 250°C. In HF-bearing solutions, the main Sn(IV) species are the hydroxofluoride complexes HSnO2F(aq) (Sn(OH)3F(aq)) and SnOF2(aq) (Sn(OH)2F2(aq)), the latter predominating at 200°C at high HF concentrations up to 1m [mol (kg H2O)−1] and being the main hydroxofluoride complex of Sn(IV) at >300°C. In alkaline fluoride solutions, the main complex is SnO2F (Sn(OH)4F). New experimental data were regressed together with literature data with calculation of the standard thermodynamic properties and parameters of the HKF (Helgeson-Kirkham-Flowers) model equation of state for Sn(IV) hydroxofluoride complexes and SnO2(aq) (Sn(OH)4(aq)) complex. These parameters are suitable for modeling tin transport up to 500°C, 5000 bar with the possibility of extrapolation to higher PT parameters. The solubility of cassiterite in acidic fluoride fluids increases sharply with increasing temperature: an increase in temperature from 100 to 400°C leads to a more than tenfold increase in solubility, which at 400°C, 500 bar reaches 20 ppm at a total fluorine concentration of 1 wt. %. Under reducing conditions, the dependence of solubility on temperature will be more pronounced due to the formation of Sn(II) complexes at supercritical temperatures.

About the authors

M. E Tarnopolskaia

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry

Email: mashatarnopolskaya@yandex.ru
Moscow, Russia

A. V Kolokolova

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry

Moscow, Russia

I. Yu Zlivko

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry

Moscow, Russia

B. R Tagirov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry

Moscow, Russia

L. Ya Aranovich

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry

Academician of the RAS Moscow, Russia

References

  1. Барсуков В.Л. Основные черты геохимии олова. М.: Наука, 1973. 150 с.
  2. Бортников Н.С., Аранович Л.Я., Кряжев С.Г., Смирнов С.З., Гоневчук В.Г., Семеняк Б.И., Дубинина Е.О., Гореликова Н.В., Соколова Е.Н. Баджальская оловоносная магматогенно-флюидная система (Дальний Восток, Россия): переход от кристаллизации гранитов к гидротермальному отложению руд // Геология руд. Месторождений. 2019. Т. 61. № 3. С. 3–30.
  3. Lehmann B. Formation of tin ore deposits: A reassessment // Lithos. 2021. V. 402–403. 105756.
  4. Heinrich C.A. The chemistry of hydrothermal tin (-tungsten) ore deposition // Econ. Geol. 1990. V. 85. P. 457–481.
  5. Wang T., She J.-X., Yin K., Wang K., Zhang Y., Lu X., Liu X., Li W. Sn(II) chloride speciation and equilibrium Sn isotope fractionation under hydrothermal conditions: A first principles study // Geochim. Cosmochim. Acta. 2021. V. 300. P. 25–43.
  6. Li J.-X., Ding L., Evans N.J., Xu F., Fan W.-M., Zhang L.-Y., Cai F.-L., Guan Q.-Y., Yue Y.-H., Xie J. Garnet geochemistry reveals late-stage oxidation of tin-bearing fractionated granite // Lithos. 2024. V. 464–465. 107449.
  7. Клинцова А.П., Барсуков В.Л., Шемарыкина Т.П., Ходаковский И.Л. Экспериментальное определение констант устойчивости гидроксофторидных комплексов четырёхвалентного олова // Геохимия. 1975. № 4. С. 556–565.
  8. Дорофеева В.А., Коваленко Н.И., Рыженко Б.Н. Система SnO2–HF–NaF–H2O при 500°C, 1 кбар и летучести буфера Ni/NiO. Уточнение констант устойчивости Sn(II) фторидных комплексов и HF2– // Геохимия. 1994. № 5. С. 755–759.
  9. Тарнопольская М.Е. Реуков В.Л., Акинфиев Н.Н., Аранович Л.Я., Зотов А.В. Растворимость NaFкр в воде при температурах 5–443°C и термодинамические свойства F– и NaFaq // Доклады академии наук. Науки о Земле. 2025. T. 521. № 1. C. 86–91.
  10. Tanger IV J.C., Helgeson H.C. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: revised equations of state for standard partial molal properties of ions and electrolytes // Amer. J. Sci. 1988. V. 288. P. 19–98.
  11. Шваров Ю.В. HCh: Новые возможности термодинамического моделирования геохимических систем, предоставляемые Windiws // Геохимия. 2008. № 8. С. 898–903.
  12. Shvarov Yu.V. A suite of programs, OptimA, OptimB, OptimC, and OptimS compatible with the Unitherm database, for deriving the thermodynamic properties of aqueous species from solubility, potentiometry and spectroscopy measurements // Appl. Geochem. 2015. V. 55. P. 17–27.
  13. Коваленко Н.И., Рыженко Б.Н., Велюханова Т.К., Барсуков В.Л. О растворимости касситерита в растворах HF и формах переноса олова надкритическими флюидами // Доклады АН СССР. 1986. Т. 290. № 1. С. 211–214.
  14. Migdisov A.A., Williams-Jones A.E., van Hinsberg V., Salvi S. An experimental study of the solubility of baddeleyite (ZrO2) in fluoride-bearing solutions at elevated temperature // Geochim. Cosmochim. Acta. 2011. V. 75. P. 7426–7434.
  15. Gamsjäger H., Gajda T., Sangster J., Saxena S.K., Viogt W. Chemical thermodynamics of tin // Chemical Thermodynamics. V. 12. Paris, France: OECD Publications, 2012. 609 p.
  16. Kokh M.A., Akinfiev N.N., Pokrovski G.S., Salvi S., Guillaume D. The role of carbon dioxide in the transport and fractionation of metals by geological fluids // Geochim. Cosmochim. Acta. 2017. V. 197. P. 433–466.
  17. Sverjensky D.A., Harrison B., Azzolini D. Water in the deep Earth: The dielectric constant and the solubilities of quartz and corundum to 60 kb and 1200°C // Geochim. Cosmochim. Acta. 2014. V. 129. P. 125–145.
  18. Sverjensky D.A., Shock E.L., Helgeson H.C. Prediction of thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb // Geochim. Cosmochim. Acta. 1997. V. 61. P. 1359–1412.
  19. Sorokin V.I., Dadze T.P. Solubility and complex formation in the systems Hg–H2O, S–H2O, SiO2–H2O and SnO2–H2O / In: Fluids in the Crust. Springer Netherlands. 1994. P. 57–93.
  20. Duc-Tin Q., Audétat A., Keppler H. Solubility of tin in (Cl, F)-bearing aqueous fluids at 700°C, 140 MPa: A LA-ICP-MS study on synthetic fluid inclusions // Geochim. Cosmochim. Acta. 2007. V. 71. P. 3323–3335.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).