GALLIUM IN CORUNDUM FROM DEPOSITS OF VARIOUS GENETIC TYPES
- Authors: Sorokina E.S1, Kogarko L.N1
-
Affiliations:
- Vernadsky Institute of geochemistry and analytical chemistry, Russian Academy of Sciences
- Issue: Vol 524, No 1 (2025)
- Pages: 48-55
- Section: GEOCHEMISTRY
- Submitted: 04.12.2025
- Published: 15.12.2025
- URL: https://journals.rcsi.science/2686-7397/article/view/356185
- DOI: https://doi.org/10.7868/S3034506525090067
- ID: 356185
Cite item
Abstract
Corundum α-Al2O3 is a rare component of some metamorphic and igneous rocks. Corundum contains trace elements Cr, Ti, Fe, V, Ga, Si, Mg, Be, etc. replacing Al in the octahedral position. Corundum forms isostructural series with some oxides of these elements due to the proximity of ionic radii. In addition, the radius of the trivalent aluminum ion is very close to the ionic radius of trivalent gallium, which results in isomorphic substitution of aluminum by gallium. Gallium is a dispersed rare metal that is widely used in radio electronics and the semiconductor industry. Five modifications of Ga2O3 have been established, where one of them α-Ga2O3 is isostructural to corundum. The authors studied the main trace elements (Be, Mg, Ti, V, Cr, Fe and Ga) in corundum from various deposits worldwide using in situ laser ablation inductively-coupled plasma mass-spectrometry (LA-ICP-MS). The maximal amounts of this element are found in corundum of magmatic genesis, while the highest Ga values were recorded by the authors in corundum of the Ilmenogorsk complex with amounts to 370 μg/g. The detected gallium contents in corundum from this object are almost 25 times higher than the Clarke number. In addition, the analysis of literary data showed that the Ilmenogorsk corundum contains the largest amount of gallium among primary deposits of blue corundum in the world. According to our data, the concentration of gallium in nepheline of underlying urities of apatite-nepheline rocks within the Khibiny deposit is 50 μg/g. In Russia, more than 70% of Ga production occurs precisely due to apatite-nepheline ores with an average element content of about 24 μg/g.
Keywords
About the authors
E. S Sorokina
Vernadsky Institute of geochemistry and analytical chemistry, Russian Academy of Sciences
Email: esorokina@geokhi.ru
Moscow, Russia
L. N Kogarko
Vernadsky Institute of geochemistry and analytical chemistry, Russian Academy of SciencesAcademician of the RAS Moscow, Russia
References
- Сагдиев В.Н. Сорбционное извлечение галлия из щелочных алюминатных растворов. Дисс. … канд. т. н. СПб., 2019. 130 с.
- Сорокина Е.С. Зависимость формы кристаллов корунда от состава примесей // Записки Российского минералогического общества. 2021. № 3. С. 145–153.
- Химическая энциклопедия: в 5 т. Галлий / Ред. И.Л. Кнунян. М.: Советская энциклопедия, 1988. С. 479–481.
- Филина М.И., Сорокина Е.С., Аносова М.О., Кононкова Н.Н., Лютцков О.Е. Новые данные по геохимии корунда метасоматизированных ксенолитов “Рыжая незнакомка” и “Кукисвумчорр”, Хибинский щелочной массив (Кольский полуостров) // Труды Ферсмановской научной сессии ГИ КНЦ РАН. 2019. 16. С. 602–606.
- Emmet J.L., Stone-Sundberg J., Guan Yu., Sun Z. The role of silicon in the color of gem corundum // Gem & Gemmology. 2017. № 1. P. 42–47.
- Filina M.I., Sorokina E.S., Botcharnikov R., Karampelas S., Rassomakhin M.A., Kononkova N.N., Nikolaev A.G., Berndt J., Hofmeister W. Corundum Anorthosites-Kyshtymites from the South Urals, Russia: A Combined Mineralogical, Geochemical, and U–Pb Zircon Geochronological Study // Minerals. 2019. № 9. P. 234.
- Hughes R.W. Ruby & sapphire: a gemologist’s guide. RWH Publishing/Lotus Publishing, 2017. 816 p.
- Giuliani G., Groat L.A. Geology of corundum and emerald gem deposits: A review // Gems & Gemology. 2019. № 4. P. 464–489.
- Jochum K.P., Nohl U., Herwig K., Lammel E., Stoll B., Hofmann A.W. GeoReM: a new geochemical database for reference materials and isotopic standards // Geostandards and Geoanalytical Research. 2005. № 29. P. 333–338.
- Jochum K.P., Weis U., Stoll B., Kuzmin D., Yang Q., Raczek I., Jacob D.E., Stracke A., Birbaum K., Frick D.A., Günther D., Enzweiler J. Determination of reference values for NIST SRM 610–617 glasses following ISO Guidelines // Geostandards and Geoanalytical Research. 2011. № 35. P. 397–429.
- Kim H.W., Ko H., Chung Y., Cho S.B. Heterostructural phase diagram of Ga2O3-based solid solution with Al2O3 // Journal of The European Ceramic Society. 2021. № 41. P. 611–616.
- Litvinenko A.K., Sorokina E.S., Häger T., Kostitsyn Y.A., Botcharnikov R., Somsikova A.V., Ludwig T., Romashova T.V., Hofmeister W. Petrogenesis of the Snezhnoe Ruby Deposit, Central Pamir // Minerals. 2020. № 10. P. 478.
- Palke A.C., Saeseaw S., Renfro N.D., Sun Z., McClure Sh. Geographic origin determination of blue sapphire // Gems & Gemology. 2019. № 4. P. 536–579.
- Peucat, J.J., Ruffault, P., Fritch, E., Bouhnik-Le-Coz, M., Simonet, C., Lasnier, B. Ga/Mg ratio as a new geochemical tool to differentiate magmatic from metamorphic blue sapphires // Lithos. 2007. 98. 261–274.
- Sorokina E.S., Hofmeister W., Häger T., Mertz-Kraus R., Buhre S., Saul J. Morphological and chemical evolution of corundum (ruby and sapphire): Crystal ontogeny reconstructed by EMPA, LA-ICP-MS, and Cr3+ Raman mapping // American Mineralogist. 2016. № 101. P. 2716–2722.
- Sorokina E.S., Rassomakhin M.A., Nikandrov S.N., Karampelas S., Kononkova N.N., Nikolaev A.G., Anosova M.O., Somsikova A.V., Kostitsyn Y.A., Kotlyarov V.A. Origin of Blue Sapphire in Newly Discovered Spinel–Chlorite–Muscovite Rocks within Meta-Ultramafites of Ilmen Mountains, South Urals of Russia: Evidence from Mineralogy, Geochemistry, Rb–Sr and Sm–Nd Isotopic Data // Minerals. 2019. № 9. P. 36.
- Sorokina E.S., Botcharnikov R., Kostitsyn Y.A., Rösel D., Häger T., Rassomakhin M.A., Kononkova N.N., Somsikova A.V., Berndt J., Ludwig T., Medvedeva E.V., Hofmeister W. Sapphire-bearing magmatic rocks trace the boundary between paleo-continents: A case study of Ilmenogorsky alkaline complex, Uralian collision zone of Russia // Gondwana Research. 2021. № 92. P. 239–252.
- Sutherland F.L., Abduriyim A. Geographic typing of gem corundum: A test case from Australia // Journal of Gemmology. 2009. № 5–8. P. 203–210.
- Sutherland F.L., Zaw K., Meffe S., Yui T.-F., Thu K. Advances in trace element “fingerprinting” of gem corundum, ruby and sapphire, Mogok area, Myanmar // Minerals. 2015. № 5. P. 61–79.
- Zhang J., Gao C., Hui X., Chang Y. Extraction of Gallium from the Brown Corundum Dust with a One-Step Alkaline Leaching Process // Separations. 2023. № 10. P. 510.
Supplementary files


