The Effect of Soil Moisture on the Viscosity of Pastes Prepared from Them

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

It is known from the literature that the rheological behavior of soils is largely determined by the water content in pastes and soil organic matter, which is the basis of organomineral soil gels. With an increase in soil moisture, gels can swell. As a result, the viscosity of soil pastes should change. The aim of the work was to assess the effect of soil moisture on the viscosity of soil pastes. Arable horizons of soils were used in the work: sod-podzolic, gray forest, leached chernozem and chestnut. During the experiments, soil moisture was changed, but the water content in the pastes for each type of soil remained unchanged. The viscosity of soil pastes was determined by vibrational viscometry, and the size of organomineral particles in pastes was determined by laser diffractometry. For all the studied samples, the existence of two peaks in the viscosity of pastes was found, depending on soil moisture. An explanation of viscosity peaks in pastes is proposed from the perspective of changes in the structure of humic substances in organomineral gels upon reaching critical concentrations: micelles – supramolecular formations – fractal clusters. Apparently, the transition between the structural forms of humic substances under mechanical action on pastes is accompanied by the disintegration of large gel particles and the formation of a more balanced form of existence of humic substances at a given water content.

Sobre autores

G. Fedotov

Lomonosov Moscow State University

Email: gennadiy.fedotov@gmail.com
Moscow, Russia

S. Shoba

Lomonosov Moscow State University

Email: gennadiy.fedotov@gmail.com
Moscow, Russia

D. Tarasenko

Lomonosov Moscow State University

Email: gennadiy.fedotov@gmail.com
Moscow, Russia

I. Gorepekin

Lomonosov Moscow State University

Email: gennadiy.fedotov@gmail.com
Moscow, Russia

A. Sukharev

Lomonosov Moscow State University

Email: gennadiy.fedotov@gmail.com
Moscow, Russia

Bibliografia

  1. Yuan J., Wang T.J., Chen J., Huang J. A. Microscopic mechanism study of the creep properties of soil based on the energy scale method // Frontiers in Materials. 2023. V. 10. P. 1137728.
  2. Liu G., Xia J., Zheng K., Cheng J., Du J., Li D. Effects of moisture content and tillage methods on creep properties of paddy soil // Plos one. 2021. V. 16. № 6. P. e0253623.
  3. Шеин Е.В. Курс физики почв. М.: Изд-во Моск. Ун-та, 2005. 430 с.
  4. Хайдапова Д.Д., Честнова В.В., Шеин Е.В., Милановский Е.Ю. Реологические свойства черноземов типичных (Курская область) при различном землепользовании // Почвоведение. 2016. № 8. С. 955‒963.
  5. Ren-guo G., Ying-guang F. Exploration of substance bases and mechanism of soft soil rheology // Rock and Soil Mechanics. 2009. V. 30. № 7. P. 1915.
  6. Федотов Г.Н., Шоба С.А. Ушкова Д.А., Горепекин И.В., Салимгареева О.А., Потапов Д.И. Гуминовые вещества и вязкость почвенных паст // Доклады РАН. Науки о Земле. 2023. Т. 511. № 1. С. 119–123.
  7. Федотов Г.Н., Шеин Е.В., Ушкова Д.А. Салимгареева О.А., Горепекин И.В., Потапов Д.И. Надмолекулярные образования из молекул гуминовых веществ и их фрактальная организация // Почвоведение. 2023. № 8. С. 903‒910.
  8. Philippe A., Schaumann G. E. Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review // Environmental science & technology. 2014. V. 48. №. 16. P. 8946‒8962.
  9. Angelico R., Colombo C., Di Iorio E., Brtnický M., Fojt J., Conte P. Humic substances: From supramolecular aggregation to fractal conformation – Is there time for a new paradigm? // Applied Sciences. 2023. V. 13. № 4. P. 2236.
  10. Шоба С.А. Потапов Д.И., Горепекин И.В., Ушкова Д.А., Грачева Т.А., Федотов Г.Н. Состояние почвенных гелей при разной пробоподготовке к вискозиметрии образцов дерново-подзолистой почвы // Доклады РАН. Науки о жизни. 2022. Т. 504. С. 240‒244.
  11. Egashira K., Matsumoto J. Evaluation of the axial ratio of soil clays from gray lowland soils based on viscosity measurements // Soil Science and Plant Nutrition. 1981. V. 27. № 3. P. 273‒279.
  12. Kawahigashi M., Sumida H., Yamamoto K. Size and shape of soil humic acids estimated by viscosity and molecular weight // Journal of colloid and interface science. 2005. V. 284. № 2. P. 463‒469.
  13. Tarchitzky J., Chen Y. Rheology of sodium-montmorillonite suspensions: effects of humic substances and pH // Soil Science Society of America Journal. 2002. V. 66. № 2. P. 406‒412.
  14. Fedotov G.N., Shoba S.A., Ushkova D.A., Gorepekin I.V., Sukharev A. I., Potapov D. I. Three-Phase and Gel Models of Soils in the Analysis of Experimental Results // Doklady Earth Sciences. 2024. V. 515. P. 453‒457.
  15. Fasurová N., Cechlovska H., Kucerik J. A comparative study of South Moravian lignite and standard IHSS humic acids, optical and colloidal properties // Petroleum & coal. 2006. V. 48. № 2. P. 24‒32.
  16. Линкевич Е.В., Юдина Н.В., Савельева А.В. Формирование гуминовых коллоидов в зависимости от рН среды водных растворов // Журнал физической химии. 2020. Т. 94. № 4. C. 568–573.
  17. Тарасевич Ю.И., Доленко С.А., Трифонова М.Ю., Алексеенко Е.Ю. Ассоциация и коллоидно-химические свойства гуминовых кислот в водных растворах // Коллоидный журнал. 2013. Т. 75. № 2. С. 230–236.
  18. Волкова Н.Н., Джардималиева Г.И., Крисюк Б.Э., Чуканов Н.В., Шершнев В.А., Шилов Г.В. Механохимическое разрушение кристаллогидратов ацетилендикарбоксилатов кобальта и цинка при дегидратации // Известия Академии наук. Серия химическая. 2016. № 8. С. 2025‒2033.
  19. Спецов Е.А., Александрова Ю.В., Мальцева Н.В., Власов Е.А. Исследование влияния механохимического активирования на свойства гиббсита // Известия Санкт-Петербургского государственного технологического института (технического университета). 2013. № 18 (44). С. 008‒010.
  20. Мифтахова Н.Ш., Петрова Т.П. Рахматуллина И.Ф. Кристаллы. Кристаллогидраты: методические указания к лабораторным работам. Казань: Казан. гос. технол. ун-т, 2006. 24 с.
  21. Chen X., Wu Q., Gao J., Tang Y. Hydration characteristics and mechanism analysis of β-calcium sulfate hemihydrate // Construction and Building Materials. 2021. V. 296. P. 123714.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».