Influence of Ca,Mg-carbonate melts compositions on the solubility of sulfur under PТ-parameters of the lithospheric mantle
- Authors: Furman O.V.1, Bataleva Y.V.1, Zdrokov E.V.1, Borzdov Y.M.1, Palyanov Y.N.1
-
Affiliations:
- V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences
- Issue: Vol 521, No 1 (2025)
- Pages: 70-77
- Section: GEOCHEMISTRY
- Submitted: 20.08.2025
- Published: 15.12.2025
- URL: https://journals.rcsi.science/2686-7397/article/view/305252
- DOI: https://doi.org/10.31857/S2686739725030084
- EDN: https://elibrary.ru/fufzkg
- ID: 305252
Cite item
Abstract
Experimental studies aimed at the estimation of the solubility of sulfur in Mg,Ca-carbonate melts under lithospheric mantle conditions (MgCO3–S, CaMg(CO3)2–S, CaCO3–S and (Mg,Ca)CO3–S systems, Ca# (CaO/(CaO+MgO) (molar)) = 0, 0.2, 0.5, 0.8 and 1.0; pressure 6.3 GPa, 1450–1550°C, 20 hours). It was experimentally demonstrated that melts of alkaline earth carbonates are capable of dissolving from 1.9 to 6.5 wt.% S, while for the first time it was established that the solubility of sulfur directly depends on both temperature and the CaO/MgO ratio in the melt. In particular, it has been demonstrated that the solubility of sulfur in a melt of Ca-carbonate is 6–7 times higher than in a melt of Mg-carbonate. The obtained results indicate that sulfur-enriched melts of alkaline earth carbonates can be considered as potential metasomatic agents, not only capable of transporting sulfur and carbon, but also being potential media for graphite crystallization and diamond growth.
About the authors
O. V. Furman
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences
Email: bataleva@igm.nsc.ru
Novosibirsk, Russia
Yu. V. Bataleva
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences
Email: bataleva@igm.nsc.ru
Novosibirsk, Russia
E. V. Zdrokov
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences
Email: bataleva@igm.nsc.ru
Novosibirsk, Russia
Y. M. Borzdov
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences
Email: bataleva@igm.nsc.ru
Novosibirsk, Russia
Y. N. Palyanov
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences
Author for correspondence.
Email: bataleva@igm.nsc.ru
Novosibirsk, Russia
References
- O’Reilly S.Y., Griffin W.L. Mantle metasomatism. In: Harlov D.E., Austrheim H., editors. Metasomatism and the chemical transformation of rock: the role of fluids in terrestrial and extraterrestrial processes. Lecture notes in earth system sciences. London: Springer, Springer Nature, 2013. P. 471–533.
- Shirey S.B., Smit K.V., Pearson G.D., Walter M.J., Aulbach S., Brenker F.E., Bureau H., Burnham A.D., Cartigny P., Chacko T., Frost D.J., Hauri E.H., Jacob D.E., Jacobsen S.D., Kohn S.C., Luth R.W., Mikhail S., Navon O., Nestola F., Nimis P., Palot M., Smith E.M., Stachel T., Stagno V., Steele A., Stern R.A., Thomassot E., Thomson A.R., Weiss Y. Diamonds and the mantle geodynamics of carbon. In: Orcutt B., Daniel I., Dasgupta R., eds. Deep Carbon. Cambridge: Cambridge University Press, 2019. P. 89–128.
- Когарко Л.Н. Щелочной магматизм и обогащенные мантийные резервуары. Механизмы возникновения, время появления и глубины формирования // Геохимия. 2006. № 1. С. 1–10.
- Giuliani A., Phillips D., Fiorentini M.L., Kendrick M.A., Maas R., Wing B.A., Woodhead J.D., Bui T.H., Kamenetsky V.S. Mantle oddities: A sulphate fluid preserved in a MARID xenolith from Bultfontein kimberlite (South Africa) // Earth and Planetary Science Letters. 2013. V. 376. P. 74–86.
- Zajacz Z. The effect of melt composition on the partitioning of oxidized sulfur between silicate melts and magmatic volatiles // Geochimica et Cosmochimica Acta. 2015. V. 158. P. 223–244.
- Palme H., O’Neill H.S.C. Cosmochemical estimates of mantle composition / In: Carlson, R.W. (ed.) Treatise on Geochemistry. V. 3: The Mantle and Core. Elsevier, 2014. P. 1–39.
- Liu Y., Samaha N.-T., Baker D.R. Sulfur concentration at sulfide saturation (SCSS) in magmatic silicate melts // Geochimica et Cosmochimica Acta. 2007. V. 71. P. 1783–1799.
- Woodland A.B., Girnis A.V., Bulatov V.K., Brey G.P., Hofer H.E. Experimental study of sulfur solubility in silicate–carbonate melts at 5-10.5 GPa // Chemical Geology. 2019. V. 505. P. 12–22.
- Chowdhury P., Dasgupta R. Sulfur extraction via carbonated melts from sulfide-bearing mantle lithologies – Implications for deep sulfur cycle and mantle redox // Geochimica et Cosmochimica Acta. 2020. V. 269. P. 376–397.
- Kamenetsky M.B., Sobolev A.V., Kamenetsky V.S., Maas R., Danyushevsky L.V., Thomas R., Pokhilenko N.P., Sobolev N.V. Kimberlite melts rich in alkali chlorides and carbonates: a potential metasomatic agent in the mantle // Geology. 2004. V. 32. P. 845–848.
- Zedgenizov D.A., Ragozin A.L., Shatsky V.S., Araujo D., Griffin W.L., Kagi H. Mg and Fe-rich carbonate-silicate high-density fluids in cuboid diamonds from the Internationalnaya kimberlite pipe (Yakutia) // Lithos. 2009. V. 112S. P. 638–647.
- Sharygin I.S., Litasov K.D., Shatskiy A., Golovin A.V., Ohtani E., Pokhilenko N.P. Melting phase relations of the Udachnaya-East Group-I kimberlite at 3.0–6.5 GPa: Experimental evidence for alkali-carbonatite composition of primary kimberlite melts and implications for mantle plumes // Gondwana Research. 2015. V. 28. P. 1391–1414.
- Martin A.M., Righter K., Treiman A.H. Experimental constraints on the destabilization of basalt+ calcite+anhydrite at high pressure–high temperature and implications for meteoroid impact modeling // Earth and Planetary Science Letters. 2012. V. 331–332. P. 291–304.
- Баталева Ю.В., Фурман О.В., Борздов Ю.М., Пальянов Ю.Н. Экспериментальное исследование растворимости серы в Ca,Mg-карбонатном расплаве при P,T-параметрах литосферной мантии // Геология и геофизика. 2023. Т. 64. № 4. C. 479–493.
- Sobolev N.V., Kaminsky F.V., Griffin W.L., Yefimova E.S., Win T.T., Ryan C.G., Botkunov A.I. Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia // Lithos. 1997. V. 39. № 20. P. 135–157.
- Pal’yanov Yu.N., Sokol A.G., Borzdov Yu.M., Khokhryakov A.F., Sobolev N.V. Diamond formation from mantle carbonate fluids // Nature. 1999. V. 400. P. 417–418.
- Palyanov Y., Kupriyanov I., Khokhryakov A., Borzdov Y. High-pressure crystallization and properties of diamond from magnesium-based catalysts // CrystEngComm. 2017. № 19. P. 4459–4475.
- Palyanov Y.N., Borzdov Y.M., Bataleva Y.V., Sokol A.G., Palyanova G.A., Kupriyanov I.N. Reducing role of sulfides and diamond formation in the Earth’s mantle // Earth and Planetary Science Letters. 2007. № 260 (1–2). P. 242–256.
- Bataleva Y.V., Palyanov Y.N., Borzdov Y.M., Novoselov I.D., Bayukov O.A. An effect of reduced S-rich fluids on diamond formation under mantle-slab interaction // Lithos. 2019. V. 336–337. P. 27–39.
- Yaxley G.M., Anenburg M., Tappe S., Decree S., Guzmic T. Carbonatites: Classification, Sources, Evolution, and Emplacement // Annual Review of Earth and Planetary Sciences. 2022. V. 50. № 1. P. 261–293.
Supplementary files
