Symmetry and structural complexity of minerals of the earth deep geospheres (pyrolite model)
- 作者: Krivovichev S.V.1,2
-
隶属关系:
- Federal Research Center “Kola Science Center of the Russian Academy of Sciences”
- St. Petersburg State University
- 期: 卷 520, 编号 1 (2025)
- 页面: 99-104
- 栏目: MINERALOGY
- ##submission.dateSubmitted##: 29.05.2025
- ##submission.datePublished##: 30.05.2025
- URL: https://journals.rcsi.science/2686-7397/article/view/294017
- DOI: https://doi.org/10.31857/S2686739725010109
- EDN: https://elibrary.ru/GWJMPS
- ID: 294017
如何引用文章
详细
Using the Dolivo-Dobrovol’sky index and information-based parameters on the basis of new experimental data, the problem of symmetry and structural complexity of the mineral matter of the deep geospheres is considered in the framework of the pyrolite model of the Earth’s mantle. It is shown that, in contrast to the previously made conclusions about the increase of the symmetry of minerals with depth, the behavior of the quantitative parameters of symmetry and structural complexity is nonlinear. The symmetry increases (and the structural complexity decreases) to the boundary of the decomposition of ringwoodite into bridgmanite and magnesiowustite (660 km), after which there is a decrease of the Dolivo-Dobrovol’sky index to 18.40 and an increase of the atomic parameter of structural complexity to 2.786 bit/atom. This behavior is due to the uneven and opposite effect of temperature and pressure on the symmetry and complexity of the crystalline substance, which is caused by the nonlinear nature of the averaged geotherm of the Earth's crust and mantle. Information parameters of structural complexity are a more sensitive indicator of symmetry than the Dolivo-Dobrovol’sky index, which is due to the former taking into account the features of the crystal structure of specific minerals.
全文:

作者简介
S. Krivovichev
Federal Research Center “Kola Science Center of the Russian Academy of Sciences”; St. Petersburg State University
编辑信件的主要联系方式.
Email: s.krivovichev@ksc.ru
Academician of the RAS
俄罗斯联邦, Apatity; St. Petersburg参考
- Урусов В. С. Симметрийная статистика минеральных видов и эволюционная диссимметризация минерального вещества // Зап. РМО. 2006. Т. 135. № 6. С. 1–12.
- Krivovichev S. V., Krivovichev V. G., Hazen R. M., Aksenov S. M., Avdontceva M. S., Banaru A. M., Gorelova L. A., Ismagilova R. M., Kornyakov I. V., Kuporev I. V., Morrison S. M., Panikorovskii T. L., Starova G. L. Structural and chemical complexity of minerals: an update // Mineral. Mag. 2022. V. 86. P. 183–204.
- Krivovichev S. V., Krivovichev V. G., Hazen R. M. Structural and chemical complexity of minerals: correlations and time evolution // Eur. J. Mineral. 2018. V. 30. P. 231–236.
- Bermanec M., Vidović N., Ma X., Hazen R. M. The average symmetry index of minerals co-varies with their hydrogen content, rarity, and paragenetic mode // Minerals. 2024. V. 14. P. 387.
- Bermanec M., Vidović N., Gavryliv L., Morrison S. M., Hazen R. M. Evolution of symmetry index in minerals // Geosci. Data J. 2024. V. 11. P. 69–85.
- Доливо-Добровольский В. В. К кристаллографии земных оболочек // Зап. ВМ О. 1984. Т. 113. № 5. С. 586–590.
- Филатов С. К. Симметрийная статистика минеральных видов в различных термодинамических обстановках // Зап. РМ О. 2019. Т. 148. № 3. С. 1–13.
- Pushcharovsky D. Yu., Pushcharovsky Yu. M. The mineralogy and the origin of deep geospheres: A review // Earth-Sci. Rev. 2012. V. 113. P. 94–109.
- Krivovichev S. V. High-pressure silicates: crystal chemistry and systematics // Зап. РМО. 2021. Т. 150. № 5. С. 1–78.
- Ringwood A. E. Composition and Petrology of the Earth’s Mantle. New York: McGraw Hill, 1975.
- Stixrude L., Lithgow-Bertelloni C. Mineralogy and elasticity of the oceanic upper mantle: Origin of the low-velocity zone // J. Geophys. Res. 2005. V. 110. P. B03204.
- Irifune T., Tsuchiya T. Mineralogy of the Earth – phase transitions and mineralogy of the lower mantle // Treatise on Geophysics. V. 2. Mineral Physics / Ed. by D. Price. Amsterdam: Elsevier, 2007. P. 33–62.
- Krivovichev S. V. Topological complexity of crystal structures: quantitative approach // Acta Crystallogr. 2012. V. A68. P. 393–398.
- Krivovichev S. V. Structural complexity of minerals: information storage and processing in the mineral world // Miner. Mag. 2013. V. 77. № 3. P. 275–326.
- Tschauner O., Ma C., Beckett J. R., Prescher C., Prakapenka V. B., Rossman G. R. Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite // Science. 2014. V. 346. P. 1100–1102.
- Liu L. G. Silicate perovskite from phase transformations of pyrope-garnet at high pressure and temperature // Geophys. Res. Lett. 1974. V. 1. № 6. P. 277–280.
- Ismailova L., Bykova E., Bykov M., Cerantola V., McCammon C., Boffa Ballaran T., Bobrov A., Sinmyo R., Dubrovinskaia N., Glazyrin K., Liermann H.-P., Kupenko I., Hanfland M., Prescher C., Prakapenka V., Svitlyk V., Dubrovinsky L. Stability of Fe, Al-bearing bridgmanite in the lower mantle and synthesis of pure Fe-bridgmanite // Science Advances. 2016. V. 2. P. e1600427.
- Филатов С. К. Обобщенная концепция повышения симметрии кристаллов с ростом температуры // Кристаллография. 2011. Т. 56. С. 1019–1028.
- Turcotte D. L., Schubert G. Geodynamics. Cambridge University Press, 2014.
- Winter J. D. Principles of Igneous and Metamorphic Petrology. Essex: Pearson Eduction Limited, 2014.
补充文件
