Sulfur isotope composition of kuvaevite (Ir5Ni10S16) and tolovkite (irsbs): first results

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results of studying the isotope system of sulfur in platinum-group minerals (PGMs) are rare and generally limited to S-isotope data of Ru-Os sulfides from dunite-harzburgite massifs. To partially fill this gap, we for the first time characterized the features of the S-isotopic composition of kuvaevite (Ir5Ni10S16) and tolovkite (IrSbS) from the Verkh-Neyvinsky dunite-harzburgite massif, a typical representative of the ophiolite association in the Middle Urals. The study employed a number of analytical techniques, including scanning electron microscopy, electron microprobe analysis and a femtosecond laser ablation with a gas source isotope ratio mass spectrometry. The primary PGM assemblage is formed by osmium and iridium minerals, laurite, kuvaevite and Pt-Fe alloys, which are replaced by As-bearing laurite, irarsite, tolovkite and other PGMs of secondary origin. Kuvaevite is characterized by a predominance of Ni over Fe, Cu and Co (Ni/(Ni+Fe+Cu+Co from 0.56 to 0.58), as well as Ir over other platinum-group elements (PGE) (i. e., Ir/(Ir+Rh+Os+Ru+Pt+Pd) = 1.00); tolovkite is characterized by impurities of Pt (0.38–2.86 wt.%), Rh (0.58–1.36 wt.%), Ru (0.31–1.47 wt.%), Ni (0.34–0.74 wt.%), Cu (0.06–1.10 wt.%) and As (0.06–1.44 wt.%). Particularities of the sulfur isotopic composition of kuvaevite (δ34S from 0.9 to 2.1‰, δ34S mean equals to 1.5±0.5‰, n = 4) are indicative of the mantle source with a chondritic S-isotope composition. The heavy sulfur isotope composition of tolovkite (δ34S from 5.0 to 7.8‰; δ34S mean = 5.9±0.9‰, n = 8) indicates the participation of sulfur of crustal origin (for example, isotopically heavy sulfur derived from host sedimentary rocks), being consistent with the secondary origin of the tolovkite. New data support the conclusion about contrasting sources of sulfur and a multistage evolution of PGE mineralization.

作者简介

I. Badanina

Zavaritsky Institute of Geology and Geochemistry, Ural Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: innabadanina@yandex.ru
俄罗斯联邦, Ekaterinburg

V. Murzin

Zavaritsky Institute of Geology and Geochemistry, Ural Branch, Russian Academy of Sciences

Email: innabadanina@yandex.ru
俄罗斯联邦, Ekaterinburg

K. Malitch

Zavaritsky Institute of Geology and Geochemistry, Ural Branch, Russian Academy of Sciences

Email: innabadanina@yandex.ru
俄罗斯联邦, Ekaterinburg

参考

  1. O’Driscoll B., González-Jiménez J.M. Petrogenesis of the platinum-group minerals // Reviews in Mineralogy and Geochemistry. 2016. V. 81. P. 489–578.
  2. Hanley J.J. The Aqueous Geochemistry of the Platinum-Group Elements (PGE) in Surficial, Low-T Hydrothermal and High-T Magmatic Hydrothermal Environments // Exploration for Platinum-Group Element Deposits; Mungall J.E. (ed.) Mineral Assoc Canada: Quebec, QC, Canada. 2005. P. 35–56.
  3. Binary Alloy Phase Diagrams. Massalski T.B. (ed.) Amer. Soc. Metals, Metals Park, Ohio, 1993. 2224 p.
  4. Andrews D.R.A., Brenan J.M. Phase-equilibrium constraints on the magmatic origin of laurite and Os-Ir alloy // Canadian Mineralogist. 2002. V. 40. P. 1705–1716.
  5. Костоянов А.И. Модельный Re-Os возраст самородных платиновых минералов // Геология рудных месторождений. 1998. Т. 40. № 6. С. 540–545.
  6. Malitch K.N., Badanina I.Yu., Belousova E.A., Murzin V.V., Velivetskaya T.A. Origin of Ru-Os sulfides from the Verkh-Neivinsk ophiolite massif (Middle Urals, Russia): Compositional and S-Os isotope evidence // Minerals. 2021. V. 11. № 3. 329.
  7. Hattori K.H., Cabri L.J., Johanson B., Zientek M.L. Origin of placer laurite from Borneo: Se and As contents, and S isotopic compositions // Mineralogical Magazine. 2004. V. 68. № 2. P. 353–368.
  8. Мурзин В.В., Баданина И.Ю., Малич К.Н., Игнатьев А.В., Веливецкая Т.А. Изотопный состав серы Ru-Os сульфидов Верх-Нейвинского дунит-гарцбургитового массива, Средний Урал: Первые данные // ДАН. 2019. Т. 488. № 2. С. 185–188.
  9. Мурзин В.В., Суставов С.Г., Мамин Н.А. Золотая и платиноидная минерализация россыпей Верх-Нейвинского массива альпинотипных гипербазитов (Средний Урал). Екатеринбург: Изд. УГГГА, 1999. 93 с.
  10. Ефимов А.А. Габбро-гипербазитовые комплексы Урала и проблема офиолитов. М.: Наука, 1984. 232 с.
  11. Барков А.Ю., Толстых Н.Д., Мартин Р.Ф., Тамура Н., Ма Ч., Никифоров А.А. Куваевит (Ir5Ni10S16) – новый минеральный вид, его ассоциации и особенности генезиса (россыпная зона р. Сисим, Восточный Саян) // Геология и геофизика. 2022. Т. 63. № 12. С. 1653–1669.
  12. Баданина И.Ю., Малич К.Н., Мурзин В.В., Хиллер В.В., Главатских С.П. Минералого-геохимические особенности платиноидной минерализации Верх-Нейвинского дунит-гарцбургитового массива (Средний Урал, Россия) // Труды ИГГ УрО РАН. 2013. Вып. 160. С. 188–192.
  13. Варламов Д.А., Мурзин В.В. Платинометальная минерализация Верх-Нейвинского ультраосновного массива (Средний Урал): первичные и вторичные парагенезисы и новые минеральные виды // Ультрамафит-мафитовые комплексы: геология, строение, рудный потенциал. Материалы конференции, Иркутск: изд-во Оттиск, 2019. С. 70–75.
  14. Ignatiev A.V., Velivetskaya T.A., Budnitskiya S.Y, Yakovenko V.V., Vysotskiy S.V., Levitskii V.V. Precision analysis of multisulfur isotopes in sulfides by femtosecond laser ablation GC-IRMS at high spatial resolution // Chemical Geology. 2018. V. 493. P. 316–326.
  15. Barkov A.Y., Tolstykh N.D., Martin R.F., McDonald A.M. Tamuraite, Ir5Fe10S16, a new species of platinum-group mineral from the Sisim Placer Zone, Eastern Sayans, Russia // Minerals. 2021. V. 11. 545.
  16. Barkov A.Y., Tolstykh N.D., Tamura N., Martin R.F., McDonald A.M., Cabri L.J. Ferrotorryweiserite, Rh5Fe10S16, a new mineral species from the Sisim Placer Zone, Eastern Sayans, Russia, and the torryweiserite–ferrotorryweiserite series // Minerals. 2021. V. 11. 1420.
  17. Makovicky M., Makovicky E., Rose-Hansen J. Experimental studies on the solubility and distribution of platinum-group elements in base-metal sulfdes in platinum deposits // Metallogeny of basic and ultrabasic rocks (Gallagher M.J., Ixer R.A., Neary C.R., Prichard H.M. eds.). The Institute of Mining and Metallurgy, London, 1986. P. 415–425.
  18. Thode H., Monster J., Dunford H. Sulphur isotope geochemistry // Geochimica et Cosmochimica Acta. 1961. V. 25 P. 159–174.
  19. Cartigny P., Farquhar J., Thomassot E., Harris J.W., Wing B., Masterson A., McKeegan K., Stachel T. A mantle origin for Paleoarchean peridotitic diamonds from the Panda kimberlite, Slave Craton: evidence from 13C-, 15N- and 33, 34S-stable isotope systematics // Lithos. 2009. V. 112. P. 852‒864.
  20. Gao X., Thiemens M.H. Variations in the isotopic composition of sulfur in enstatite and ordinary chondrites // Geochimica et Cosmochimica Acta. 1993. V. 57. P. 3171–3176.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».