Late devonian calc-alkaline high-k fractionated “Ferroan” I-type leucogranites (Rudny Altai)
- Authors: Kruk N.N.1, Kuibida M.L.1, Sokolova E.N.1, Kotler P.D.1, Yakovlev V.A.1
-
Affiliations:
- Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences
- Issue: Vol 515, No 2 (2024)
- Pages: 229-236
- Section: PETROLOGY
- Submitted: 15.10.2024
- Accepted: 15.10.2024
- Published: 15.10.2024
- URL: https://journals.rcsi.science/2686-7397/article/view/266229
- DOI: https://doi.org/10.31857/S2686739724040078
- ID: 266229
Cite item
Abstract
The paper presents the geological, geochemical and isotope-geochronological studies of the Rudny Altai granitoids in the west of Central Asian Orogenic Belt (CAOB) – the front part of the Altai convergent margin of the Siberian continent. Isotopic U–Pb dating of zircons showed an age range from 367 to 363 Ma. Geochemical characteristics indicate the relevance of leucogranites to calc-alkaline high-K series (SiO2 > 73 wt.%, Na2O+K2O = 6.9–9 wt.%, Na2O/K2O = 0.7–1.2), with calc-alkaline and alkaline-calcic affinities (MALI = 6.32–8.41). They bear meta- to weakly-peraluminous values (A/CNK = 0.9–1.2), high Fe* index (0.84–0.97) and high fluorine (0.04–0.17 wt.%) content. Variations of HFSEs, LILEs contents, Ga/Al ratios and strong negative A/CNK-P2O5 correlation indicate their affinity with fractionated I-type granitoids. Rare metal (beryllium) mineralization is spatially and genetically related to leucogranites. It is assumed that the formation of granitoids was associated with shearing setting at the convergent margin of the Siberian continent, as a result of oblique subduction of the Irtysh-Zaisan ocean plate.
About the authors
N. N. Kruk
Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences
Author for correspondence.
Email: kruk@igm.nsc.ru
Corresponding Member of the RAS
Russian Federation, NovosibirskM. L. Kuibida
Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences
Email: kruk@igm.nsc.ru
Russian Federation, Novosibirsk
E. N. Sokolova
Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences
Email: kruk@igm.nsc.ru
Russian Federation, Novosibirsk
P. D. Kotler
Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences
Email: kruk@igm.nsc.ru
Russian Federation, Novosibirsk
V. A. Yakovlev
Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences
Email: kruk@igm.nsc.ru
Russian Federation, Novosibirsk
References
- Bonin B., Janoušek V., Moyen J.F. Chemical variation, modal composition and classification of granitoids // Geological Society, London, Special Publications. 2020. V. 491. No. 1. P. 9–51.
- Clemens J.D., Stevens G. What controls chemical variation in granitic magmas? // Lithos. 2012. V. 134. P. 317–329.
- Frost C.D., Frost B.R., Beard J.S. On silica-rich granitoids and their eruptive equivalents // American Mineralogist. 2016. V. 101. No. 6. P. 1268–1284.
- Владимиров А.Г., Крук Н.Н., Руднев С.Н. и др. Геодинамика и гранитоидный магматизм коллизионных орогенов // Геология и геофизика. 2003. Т. 44. № 12. С. 1321–1338.
- Добрецов Н.Л. Эволюция структур Урала, Казахстана, Тянь-Шаня и Алтае-Саянской области в Урало-Монгольском складчатом поясе (Палеоазиатский океан) // Геология и геофизика. 2003. Т. 44. № 1–2. С. 5–27.
- Ярмолюк В.В., Коваленко В.И. Глубинная геодинамика, мантийные плюмы и их роль в формировании Центрально-Азиатского складчатого пояса // Петрология. 2003. Т. 11. № 6. С. 556–586.
- Крук Н.Н. Континентальная кора Горного Алтая: этапы формирования и эволюции, индикаторная роль гранитоидов // Геология и геофизика. 2015. Т. 56. № 8. С. 1403–1423.
- Мурзин О.В. Государственная геологическая карта Российской Федерации 1:200 000. Сер. Алтайская лист М-44-X, XI. Объяснит. зап. СПб. 2001. 219 с.
- Bachmann O., Bergantz G.W. Rhyolites and their source mushes across tectonic settings // Journal of Petrology. 2008. V. 49. No. 12. P. 2277–2285.
- Костицын Ю.А. Накопление редких элементов в гранитах. Часть 1 // Природа. 2002. № 1. С. 21–30.
- Смирнов С.З. Томас В.Г., Соколова Е.Н. и др. Экспериментальное исследование герметичности включений водосодержащих силикатных расплавов при внешнем давлении D2O при 650 С и 3 кбар // Геология и геофизика. 2011. Т. 52. № 5. С. 690–703.
- Christiansen E.H., Lee D.E. Fluorine and chlorine in granitoids from the Basin and Range province, western United States // Economic Geology. 1986. V. 81. No. 6. P. 1484–1494.
- Абрамов С.С. Образование высокофтористых магм путем фильтрации флюида через кислые магмы: петрологические и геохимические свидетельства метамагматизма // Петрология. 2004. Т. 12. № 1. С. 22–45.
- Li X.C., Harlov D.E., Zhou M.F., Hu H. Experimental investigation into the disturbance of the Sm-Nd isotopic system during metasomatic alteration of apatite. Geochimica et Cosmochimica Acta. 2022. V. 330. P. 191–208.
- Chen C. Ding X., Li R., et al. Crystal fractionation of granitic magma during its non-transport processes: A physics-based perspective // Science China Earth Sciences. 2018. V. 61. P. 190–204.
- Cuney M., Barbey P. Uranium, rare metals, and granulite-facies metamorphism // Geoscience Frontiers. 2014. V. 110. No. 5. P. 729–745.
- Мартынов Ю.А., Ханчук А.И. Кайнозойский вулканизм Восточного Сихотэ-Алиня: результаты и перспективы петрологических исследований Популярные // Петрология. 2013. Т. 21. № 1. С. 94–108.
Supplementary files
