Sedimentary records of high-mountain lakes in the arid Russian Altai – first results of multidisciplinary study (last glacial maximum – holocene)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Sediment cores from three lakes in the Boguty depression allowed studying sedimentary records up to ~24 ka old in subaquatic sections up to 4.71 m long. This is the highest (2390–2470 m a. s. l.) and longest achieve of geochronological and paleoecological data for the neighboring arias of Altai, Tuva and Mongolia, which reflects the course of natural processes in the highest and most arid part of the Russian Altai from the Last Glacial Maximum till the present day. Paper reports estimations of the freshwater reservoir effect for the moraine-dammed Upper Boguty lake, which are 290 years for the present time, and about 1200 and 1300 years for the times ~5.7 and ~9.6 ka ago, respectively; chronological benchmarks (16–13 ka ago) for sedimentological transition zone between the late Pleistocene glacial-lacustrine clays and the Holocene biogenic-terrigenous silts, which was determined on the basis of multidisciplinary analysis; the size of glaciers in MIS-2 and in the Younger Dryas, as well as the time of thermokarst lakes formation (no later than 8.7 ka ago) within the upper terminal moraine complex; conformation of wide spreading of tree vegetation in the now treeless Boguty depression in the first third of the Holocene.

Full Text

Restricted Access

About the authors

A. R. Agatova

Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences; Ural Federal University

Author for correspondence.
Email: agat@igm.nsc.ru
Russian Federation, Novosibirsk; Yekaterinburg

R. K. Nepop

Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences; Ural Federal University

Email: agat@igm.nsc.ru
Russian Federation, Novosibirsk; Yekaterinburg

A. A. Schetnikov

Institute of Earth Crust, Siberian Branch of the Russian Academy of Sciences; A.P. Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences

Email: agat@igm.nsc.ru
Russian Federation, Irkutsk; Irkutsk

M. A. Krainov

Institute of Earth Crust, Siberian Branch of the Russian Academy of Sciences; A.P. Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences

Email: agat@igm.nsc.ru
Russian Federation, Irkutsk; Irkutsk

E. V. Ivanov

A.P. Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences

Email: agat@igm.nsc.ru
Russian Federation, Irkutsk

I. A. Filinov

Institute of Earth Crust, Siberian Branch of the Russian Academy of Sciences; A.P. Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences

Email: agat@igm.nsc.ru
Russian Federation, Irkutsk; Irkutsk

P. Ding

Guangzhou Institute of Geochemistry, Chinese Academy of Sciences; Center for Excellence in Deep Earth Science, Chinese Academy of Sciences

Email: agat@igm.nsc.ru

State Key Laboratory of Isotope Geochemistry

Taiwan, Province of China, Guangzhou; Guangzhou

Yi-G Xu

Guangzhou Institute of Geochemistry, Chinese Academy of Sciences; Center for Excellence in Deep Earth Science, Chinese Academy of Sciences

Email: agat@igm.nsc.ru

State Key Laboratory of Isotope Geochemistry, Academician of the CAS

Taiwan, Province of China, Guangzhou; Guangzhou

References

  1. Ганюшкин Д. А., Чистяков К. В., Кунаева Е. П. и др. Современное оледенение хребта Чихачева (Юго-Восточный Алтай) и его динамика после максимума малого ледникового периода // Лед и Снег. 2016. Т. 56. № 1. С. 29–42.
  2. Девяткин Е. В. Кайнозойские отложения и неотектоника Юго-Восточного Алтая. Москва: Наука, 1965. 243 с.
  3. Рудой А. Н. Гигантская рябь течения (история исследований, диагностика и палеогеографическое значение). Томск: ТГПУ, 2005. 224 с.
  4. Бородавко П. С. Геоинформационный анализ постгляциального лимногенеза юго-восточного Алтая // Интерэкспо Гео-Сибирь. 2015. Т. 4. № 2. С. 250–255.
  5. Blomdin R., Stroeven A. P., Harbor J. M., et al. Timing and dynamics of glaciation in the Ikh Turgen Mountains, Altai region, High Asia // Quaternary Geochronology. 2018. V. 47. P. 54–71.
  6. Agatova A. R., Khazina I. V., Bronnikova M. A., et al. Reconstruction of postglacial landscape evolution within the eastern periphery of Chuya depression on the basis of multidisciplinary analysis of peats in Boguty river basin, SE Altai, Russia. IOP Conference Series // Earth and Environmental Science. 2018. V. 138 (1), P. 012001.
  7. Bronnikova M. A., Konoplianikova Yu.V., Agatova A. R., et al. Holocene Environmental Change in South-East Altai Evidenced by Soil Record // Geography, Environment, Sustainability. 2018. V. 11 (4). P. 100–111.
  8. Непоп Р. К., Агатова А. Р. Радиоуглеродная хронология голоценовых селей в долине реки Богуты (Русский Алтай) // География и природные ресурсы. 2019. № . 1. С. 79–87.
  9. Nepop R. K., Agatova A. R., Uspenskaya O. N. Climatically driven late Pleistocene – Holocene hydrological system transformation and landscape evolution in the eastern periphery of Chuya basin, SE Altai, Russia // Quaternary International. 2020. V. 538. P. 63–79.
  10. Бутвиловский В. В. Палеогеография последнего оледенения и голоцена Алтая: событийно-катастрофическая модель. Томск: Изд-во ТГУ, 1993. 253 с.
  11. Blaauw M., Christen J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process // Bayesian Anal. 2011. V. 6. № 3. P. 457–474.
  12. Назаров А. Н., Соломина О. Н., Мыглан В. С. Динамика верхней границы леса и ледников центрального и восточного Алтая в голоцене // ДАН. 2012. Т. 444. № 6. С. 671–675.
  13. Ganyushkin D., Chistyakov K., Volkov I., et al. Palaeoclimate, glacier and treeline reconstruction based on geomorphic evidences in the Mongun-Taiga massif (south-eastern Russian Altai) during the Late Pleistocene and Holocene // Quaternary International. 2018. V. 470. P. 26–37.
  14. Agatova A., Nepop R., Nazarov A., et al. Climatically driven Holocene glacier advances in the Russian Altai based on radiocarbon and OSL dating and tree ring analysis // Climate. 2021. V. 9. № . 11. P. 162.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Bogutinskaya high-altitude depression, South Altai, and the lakes under study. 1 – the main ridge of the Chikhachev ridge; 2 – spurs and elevation marks (m above sea level); 3 – the boundary of the Boguta River basin; 4 – a moraine cover with a bumpy- westerly relief; 5 – shafts of finite-lateral moraines; 6 – a hydroelectric network; 7 – lakes under study; 8 – sampling sites on 10E-dating [5]; 9 – section of postglacial deposits with a 14C age of 14 thousand years [6-9].

Download (771KB)
3. Fig. 2. The studied lakes of the Bogutinskaya depression and the position of drilling points.

Download (328KB)
4. Fig. 3. Characteristics of the bottom sediments of the Upper Bogut lakes (VB‑1 and VB‑2 squares), Baran-Kul (BK) and Lower Boguts (NB) obtained by different methods. The color shows the zones of lithological transition discussed in the text.

Download (1MB)
5. Fig. 4. Depth-age models of sedimentation in lakes Verkhniye Boguty (squares VB‑1 and VB‑2) and Baran-Kul (BK).

Download (232KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies