Global carbon cycle response to external forcing

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The characteristic temporal scales of response of the globally averaged climate model with the carbon cycle to external influences with the analysis of the spectrum of the linearized evolution operator of the corresponding dynamical system are evaluated. The model exhibits response time scales of about 4–6 years (related to the carbon dynamics in vegetation) and in the range of 20–100 years (related to the carbon dynamics in non-humified soil reservoirs). When taking into account the effect of humification in the model reveals the time scale of the response, which is on the order of several millennia. For the closed carbon cycle, a time scale of 102 years is revealed, which characterizes the joint changes in the atmospheric and ocean reservoirs. At high universality of the proposed approach it can be used for a wide range of tasks.

Full Text

Restricted Access

About the authors

K. D. Savina

Lomonosov Moscow State University

Email: eliseev.alexey.v@mail.ru

физический факультет

Russian Federation, Moscow

A. V. Eliseev

Lomonosov Moscow State University; A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences; Kazan Federal University

Author for correspondence.
Email: eliseev.alexey.v@mail.ru

физический факультет

Russian Federation, Moscow; Moscow; Kazan

I. I. Mokhov

Lomonosov Moscow State University; A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences; Moscow Institute of Physics and Technology

Email: eliseev.alexey.v@mail.ru

Academician of the RAS

Russian Federation, Moscow; Moscow; Moscow

References

  1. Climate Change 2021: The Physical Science Basis. Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change / V. Masson-Delmotte, et al. (eds.). Cambridge Univ. Press., 2021.
  2. Eliseev A. V., Demchenko P. F., Arzhanov M. M., et al. Transient hysteresis of near-surface permafrost response to external forcing // Clim. Dyn. 2014. V. 42. № 5–6. P. 1203–1215.
  3. Елисеев А.В., Демченко П. Ф., Аржанов М. М., Мохов И. И. Гистерезис зависимости площади приповерхностной вечной мерзлоты от глобальной температуры // ДАН. 2012. Т. 444. № 4. С. 444–447.
  4. Kim S.-K., Shin J., An S.-I., et al. Widespread irreversible changes in surface temperature and precipitation in response to CO2 forcing // Nature Clim. Change. 2022. V. 12. № 9. P. 834–840.
  5. Мурышев К. Е., Елисеев А. В., Мохов И. И., Тимажев А. В. Взаимное запаздывание между изменениями температуры и содержания углекислого газа в атмосфере в простой совместной модели климата и углеродного цикла // ДАН. 2015. Т. 463. № 6. С. 708–712.
  6. Muryshev K. E., Eliseev A. V., Mokhov I. I., Timazhev A. V. Lead-lag relationships between global 650 mean temperature and the atmospheric CO2 content in dependence of the type and time scale of the forcing // Glob. Planet. Change. 2017. V. 148. P. 29–41.
  7. Мохов И. И. Изменения климата: причины, риски, последствия, проблемы адаптации и регулирования // Вестник РАН. 2022. Т. 92. № 1. С. 3–14.
  8. Kwon O., Schnoor J. L. Simple global carbon model: The atmosphere-terrestrial biosphere-ocean interaction // Glob. Biogeochem. Cycles. 1994. V. 8. № 3. P. 295–305.
  9. Friend A., Lucht W., Rademacher T., et al. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2 // Proc. Nat. Acad. Sci. .2013. V. 111. № 9. P. 3280–3285.
  10. Carvalhais N., Forkel M., Khomik M., et al. Global covariation of carbon turnover times with climate in terrestrial ecosystems // Nature. 2014. V. 514. № 7521 P. 213–217.
  11. Koven C. D., Chambers J. Q., Georgiou K., et al. Controls on terrestrial carbon feedbacks by productivity versus turnover in the CMIP5 Earth System Models // Biogeosciences. 2015. V. 12. № 17. Р. 5211–5228.
  12. Wu D., Piao S., Zhu D., et al. Accelerated terrestrial ecosystem carbon turnover and its drivers // Global Change Biology. 2020. V. 26. № 9. P. 5052–5062.
  13. Будыко М. И. О происхождении ледниковых эпох // Метеорология и гидрология. 1968. № 11. С. 3–12.
  14. Eliseev A. V., Mokhov I. I. Carbon cycle-climate feedback sensitivity to parameter changes of a zero-dimensional terrestrial carbon cycle scheme in a climate model of intermediate complexity // Theor. Appl. Climatol. 2007. V. 89. № 1–2. P. 9–24.
  15. Елисеев А. В. Глобальный цикл CO2: основные процессы и взаимодействие с климатом // Фундаментальная и прикладная климатология. 2017. Т. 4. С. 9–31.
  16. Zaehle S., Sitch S., Smith B., Hatterman F. Effects of parameter uncertainties on the modeling of terrestrial biosphere dynamics // Glob. Biogeochem. Cycles. 2005. V. 19. № 3. GB3020
  17. Lasaga A. C. The kinetic treatment of geochemical cycles // Geochim. Cosmochim. Acta. 1980. V. 44. № 6. Р. 815–828.
  18. Мохов И. И. Диагностика структуры климатической системы. СПб: Гидрометеоиздат, 271 с.
  19. Held I. M., Soden B. J. Robust responses of the hydrological cycle to global warming // J. Climate. 2006. V. 19. № 21. P. 5686–5699.
  20. Елисеев А. В. Линейные и нелинейные аспекты отклика климата на внешние воздействия // Известия высших учебных заведений. Радиофизика. 2023. Т. 66. № 2. С. 87–103.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Time intervals of response to external influences for option 3 the model (depending on the values of its parameters). The eigenvalue number of the linearized evolution operator for the model under consideration is indicated along the abscissa axis .

Download (79KB)
3. Fig. 2. Similar to Fig. 1, but for variant 4 of the model.

Download (78KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies