Forecast of natural variations in air temperature and sea ice on the East Siberian Sea shelf for the next centuries

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Based on the results of the spectral analysis of the air temperature and ice cover on the East Siberian Sea shelf reconstructed for the last five thousand years, empirical forecast models have been constructed that reflect the “natural scenario” of the dynamics of these climatic parameters during the next centuries. Based on the results of forecast constructions, in the future, the duration of the ice-free period, as well as the temperature of the near-surface air, will tend to increase. The conducted studies allow us to conclude that there is an anthropogenic influence on the temperature regime and ice conditions of the studied region, which manifested itself during the industrial period. Taking into account this factor, it can be assumed that the intensity of the studied natural phenomena will increase at a higher rate than is indicated by model constructions.

Full Text

Restricted Access

About the authors

V. V. Babich

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch Russian Academy of Science; V.I. Il`ichev Pacific Oceanological Institute, Far Eastern Branch Russian Academy of Science

Author for correspondence.
Email: vbabich@igm.nsc.ru
Russian Federation, Novosibirsk; Vladivostok

A. S. Astakhov

V.I. Il`ichev Pacific Oceanological Institute, Far Eastern Branch Russian Academy of Science

Email: astakhov@poi.dvo.ru
Russian Federation, Vladivostok

References

  1. Büntgen U., Myglan V. S., Ljungqvist F. C., McCormick M., Cosmo N. D., Sigl M., Jungclaus J., Wagner S., Krusic P. J., Esper J., Kaplan J. O., de Vann M. A. C., Luterbacher J., Wacker L., Tegel W., Kirdyanov A. V. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD // Nature Geoscience. 2016. V. 9 (3). P. 231–236.
  2. Su Y., Liu L., Fang X. Q., Ma Y. N. The relationship between climate change and wars waged between nomadic and farming groups from the Western Han Dinasty to the Tang Dinasty period // Climate of the Past. 2016. V. 12. № 1. P. 137‒150.
  3. IPCC2014. Climate Change 2014. The Fifth Assessment Report of the Intergovenmantal Panel of Climate Change. Cambridge; N.Y.: Cambridge Univ. Press, 2014.
  4. Astakhov A. S., Babich, V.V., Shi, X., Hu L., Obrezkova M. S., Aksentov K. I., Alatortsev A. V., Darin A. V., Kalugin I. A., Karnaukh V. N., Melgunov M. S. Climate and Ice conditions of East Siberian Sea during Holocene: reconstructions based on sedimentary geochemical multiproxy // The Holocene. 2023. V. 33. № 1. P. 3‒13.
  5. Hörner T., Stein R., Fahl K., Birgel D. Post-glacial variability of sea ice cover, river run-off and biological production in the western Laptev Sea (Arctic Ocean)–A high-resolution biomarker study // Quaternary Science Reviews. 2016. № 143. P. 133–149.
  6. Астахов А. С., Калугин И. А., Сюефа Ши, Аксентов К. И., Дарьин А. В., Лимин Ху, Бабич В. В., Мельгунов М. С., Плотников В. В. Роль ледяного покрова в формировании химического состава донных осадков Восточносибирского шельфа // Геохимия. 2021. Т. 66. № 6. С. 526–540.
  7. Dong J., Xuefa S., Xun G., Astakhov A., Hu L., Liu X., Yang G., Wang Y., Vasilenko Y., Qiao S., Bosin A., Lohmann G. Enhanced Arctic Sea ice melting controlled by larger heat discharge of Holocene rivers // Nature Communications. 2022. V. 13. 5368.
  8. Astakhov A. S., Bosin A. A., Liu Y. G., Darin A. V., Kalu-gin I. A., Artemova A. V., Babich V. V., Melgunov M. S., Vasilenko Yu.P., Vologina E. G. Reconstruction of ice conditions in the northern Chukchi Sea during recent centuries: Geochemical proxy compared with observed data // Quaternary International. 2019. V. 522. P. 23‒37.
  9. Шнитников А. В. Природные явления и их ритмическая изменчивость // Чтения памяти Л. С. Берга VIII–XIV. Л.: Наука, 1968. С. 3‒16.
  10. Витинский Ю. И., Конецкий М., Куклин Г. В. Статистика пятнообразовательной деятельности Солнца. М., 1986. 296 с.
  11. Nederbragt A. J., Thurow J. Geographic coherence of millennial-scale climate cycles during the Holocene // Paleogeography. Paleoclimatology. Paleoecology. 2005. V. 221 (3–4). P. 313–324.
  12. Kravchinsky V. A., Langereis C. G., Walker S. D., Drusskiy K. G., White D. Discovery of Holocene millennial climate cycles in the Asian continental interior: Has the sun been governing the continental climate? // Global and Planetary Change. 2013. V. 110. P. 386‒396.
  13. Бабич В. В., Рудая Н. А., Калугин И. А., Дарьин А. В. Опыт комплексного использования геохимических особенностей донных отложений и палинологических записей для палеоклиматических реконструкций (на примере оз. Телецкое, Российский Алтай) // Сиб. экол. журн. 2015. № 4. С. 497–506.
  14. Бабич В. В., Дарьин А. В., Смолянинова Л. Г., Калугин И. А. Природные периодические процессы и вариабельность климата Северного полушария // ДАН. 2017. Т. 477. № 6. С. 684‒687.
  15. Oliveira M. J. Mudanças climáticas e ciclos naturais do clima: Passado, presente e futuro da temperatura no Brasil [Climate Changes and Natural Climate Cycles: Past, Present and Future of Temperature in Brazil]. Tese para obtenção de Título de Doutor em Ciênciasб Universidade de Säo Paulo. 2021. 640 p.
  16. Darby D. A., Ortiz J. D., Grosch C. E., Lund S. P. 1500-year cycle in the Arctic Oscillation identified in Holocene Arctic sea-ice drift // Nature geoscience. 2012. V. 5. P. 897‒900.
  17. Berger W. H., von Rad U. Decadal to millennial cyclicity in varves and turbidites from the Arabian Sea: hypothesis of tidal origin // Global and Planetary Change. 2002. V. 34. P. 313–325.
  18. Taricco C., Mancuso S., Ljungqvist F. C., Alessio S., Ghil M. Multispectral analysis of Northern Hemisphere temperature records over the last five millennia // Climate Dynamics. 2015. V. 45. P. 83–104.
  19. Qian C. Disentangling the urbanization effect, multi-decadal variability and secular trend in temperature in eastern China during 1909–2010 // Atmospheric Science letters. 2016. V. 17. P. 177‒182.
  20. Бабич В. В., Дарьин А. В., Калугин И. А., Смолянинова Л. Г. Использование периодических природных процессов для прогноза климата внетропических широт Северного полушария на ближайшие 500 лет // Метеорология и гидрология. 2016. № 9. С. 5‒15.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Location of the LV77-36 column and other columns used in the work (according to [5-7]). The green dashed line shows the southern boundary of the drifting ice; the red dashed and dotted lines show the salinity isolates in July-September 17 and 23, respectively (according to [7]).

Download (927KB)
3. Fig. 2. Paleoreconstructions of anomalies of the average ten-year air temperature on the surface (a) and the duration of the ice-free period (b) during the last 5 thousand years at LV77-36 station (according to [4]).

Download (176KB)
4. Fig. 3. Results of spectral analysis of variations in the average ten-year air temperature for the last 5000 years, reconstructed from the column LV77-36, and the forecast for the next 500 years. a – the initial temperature reconstruction (black line), the linear trend (red line) and its extrapolation for the next 500 years (blue dotted line); b, c, d - highlighted 1740-, 470- and 140–year quasi-periods (red lines) approximating their sinusoids (solid blue lines) and their extrapolation for the next 500 years (blue dotted lines); e – comparison of the temperature reconstruction (black line, dotted line shows instrumental measurements) with the time series obtained by summing the trend and approximating sinusoids (red line, dotted line shows 95% confidence interval); e – forecast of the temperature regime indicating 95% confidence interval. The temperature values in diagrams b, c, d are indicated in anomalies relative to the previous component. Yellow flooded

Download (546KB)
5. Fig. 4. The results of spectral analysis of the average ten-year duration of the ice- free period (IF, decades) for the last 5,000 years, reconstructed from column LV77-36, and the forecast for the next 500 years. The symbols are analogous to Fig. 3. The values of the duration of the ice- free period in diagrams b, c, d, e ( subperiodicities of 1750, 700, 400 and 200 years, respectively) are indicated in anomalies relative to the previous component.

Download (620KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies