About the first discovery of titanium–containing hydroxylclinohumite in podiform chromitite

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For the first time in podiform chromitites, a mineral of the humite group, titanium–containing hydroxylclinohumite, belonging to natural dense water-containing magnesian silicates (DHMS phases), was found. The find was made in chrome ores of the Paity plateau, located in the northern part of the Voikaro-Synyinsky ultramafic massif of the Polar Urals. Chromitites are deposited in the dunite body, which is located at the contact of apoharzburgite amphibole-olivine-antigorite and amphibole-enstatite-olivine metamorphic rocks containing relics of non-serpentinized harzburgites. According to optical data and chemical composition, the mineral belongs to titanium-containing hydroxylclinohumite, since it contains TiO2 (up to 5.64 wt.%), in the complete absence of fluoride. The presence of OH-grouping in the mineral is confirmed by the Raman spectrum, which generally corresponds to the standard of hydroxylclinohumite. The results of geothermometry show that this mineral was formed in chromitites of the Polar Urals at a temperature of 668–740º with and, probably, a pressure of 20–25 kbar. It follows from this that the formation (or recrystallization) of chromite ores occurred under high-pressure conditions, i. e. ore occurrences of chromites in the northern part of the Voikaro-Synyinsky massif were formed, apparently, in a suprasubduction environment.

Full Text

Restricted Access

About the authors

P. B. Shiryaev

Institute of Geology and Geochemistry of the Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: pavel.shiryayev@gmail.com
Russian Federation, Yekaterinburg

Yu. V. Erokhin

Institute of Geology and Geochemistry of the Ural Branch of the Russian Academy of Sciences

Email: pavel.shiryayev@gmail.com
Russian Federation, Yekaterinburg

K. S. Ivanov

Institute of Geology and Geochemistry of the Ural Branch of the Russian Academy of Sciences

Email: pavel.shiryayev@gmail.com
Russian Federation, Yekaterinburg

V. N. Puchkov

Institute of Geology and Geochemistry of the Ural Branch of the Russian Academy of Sciences

Email: pavel.shiryayev@gmail.com

Corresponding Member of the RAS

Russian Federation, Yekaterinburg

V. V. Khiller

Institute of Geology and Geochemistry of the Ural Branch of the Russian Academy of Sciences

Email: pavel.shiryayev@gmail.com
Russian Federation, Yekaterinburg

References

  1. Wells F. G., Cater F. W. Jr., Rynearson G. A. Chromite deposits of Del Norte County, California. Geological investigations of chromite in California. Part I, Klamath Mountains // California Department of Natural Resources, Division of Mines, 1946. Ch. 1. V. 134. 76 p.
  2. Yang J. S., Dobrzhinetskaya L. F., Bai W. J., Fang Q. S., Robinson P. T., Zhang J. F., Green H. W. Diamond- and coesite-bearing chromitites from the Luobusa ophiolite, Tibet // Geology, 2007. V. 35. P. 875–878.
  3. Гекимянц В. М., Соколова Е. В., Спиридонов Э. М., Феррарис Дж., Чуканов Н. В., Пренчипе М., Авдонин В. Н., Поленов Ю. А. Гидроксилклиногумит Mg9(SiO4)4(OH, F)2 – новый минерал из группы гумита // Записки ВМО. 1999. Ч. 128. Вып. 5. С. 64–70.
  4. Trommsdorff V., Evans B. W. Titanian hydroxyl-clinohumite: formation and breakdown in antigorite rocks (Malenco, Italy) // Contributions to Mineralogy and Petrology, 1980. V. 72. P. 229–242.
  5. Shen T., Hermann J., Zhang L., Lü Z., Padrón- Navarta J.A., Xia B., Bader T. UHP metamorphism documented in Ti-chondrodite- and Ti-clinohumite-bearing serpentinized ultramafic rocks from Chinese southwestern Tianshan // Journal of Petrology, 2015. V. 56. P. 1425–1458.
  6. Wirth R., Dobrzhinetskaya L. F., Green H. W. Electron microscope study of the reaction olivine+H2O+TiO2 → titanian clinohumite + titanian chondrodite synthesized at 8 Gpa, 1300 K // American Mineralogist, 2001. V. 86. P. 601–610.
  7. Zhang R. Y., Shu J. F., Mao H. K., Liou, J. G. Magnetite lamellae in olivine and clinohumite from Dabie UHP ultramafic rocks, central China // American Mineralogist. 1999. V. 84. P. 564–569.
  8. Вахрушева Н. В. Метаморфизм хромитоносных гипербазитов Полярного Урала. Автореферат дисс. канд. геол.-мин. наук. Екатеринбург: УГГГА, 1996. 24 с.
  9. Arai S., Miura M. Formation and modification of chromitites in the mantle // Lithos. 2016. V. 264. P. 277–295.
  10. Дир У. А., Хауи Р. А., Зусман Дж. Породообразующие минералы. Т. 1. Ортосиликаты и кольцевые силикаты. М.: Мир, 1965. 372 с.
  11. Fujino K., Takeuchi Y. Crystal chemistry of titanian chondrodite and titanian clinohumite of high-pressure origin // American Mineralogist. 1978. V. 63. P. 535–543.
  12. Liu D., Hirner S. M., Smyth J. R., Zhang J., Shi X., Wang X., Zhu X., Ye Y. Crystal chemistry and high-temperature vibrational spectra of humite and norbergite: Fluorine and titanium in humite-group minerals // American Mineralogist. 2021. V. 106. P. 1153–1162.
  13. González-Jiménez J.M., Plissart G., Garrido L. N., Padrón-Navarta J.A., Aiglsperger T., Romero R., Marchesi C., Moreno-Abril A.J., Reich M., Barra F., Morata D. Ti-clinohumite and Ti-chondrodite in antigorite serpentinites from Central Chile: evidence for deep and cold subduction // European Journal of Mineralogy. 2017. V. 29. P. 959–970.
  14. Stalder R., Ulmer P. Phase relations of a serpentine composition between 5 and 14 GPa: significance of clinohumite and phase E as water carriers into the transition zone // Contributions to Mineralogy and Petrology. 2001. V. 140. P. 670–679.
  15. Weiss M. Clinohumites: a field and experimental study. PhD Thesis № 12202. Swiss Federal Institute of Technology Zurich, 1997. 168 p.
  16. De Hoog J. C.M., Hattori K., Jung H. Titanium- and water-rich metamorphic olivine in high-pressure serpentinites from the Voltri Massif (Ligurian Alps, Italy): evidence for deep subduction of high-field strength and fluid-mobile elements // Contributions to Mineralogy and Petrology. 2014. V. 167. Article 990.
  17. Rebay G., Spalla M. I., Zanoni D. Interaction of deformation and metamorphism during subduction and exhumation of hydrated oceanic mantle: Insights from the Western Alps // Journal of Metamorphic Geology. 2012. V. 30. P. 687–702.
  18. López Sánchez-Vizcaíno V., Gómez-Pugnaire M.T., Garrido C. J., Padrón-Navarta J.A., Mellini M. Breakdown mechanisms of titanclinohumite in antigorite serpentinite (Cerro del Almirez massif, S. Spain): A petrological and TEM study // Lithos. 2009. V. 107. P. 216–226.
  19. Ballhaus C., Berry R. F., Green D. H. Experimental calibration of the olivine-orthopyroxene-spinel oxygen barometer – implications for oxygen fugacity in the Earth’s upper mantle // Contribution of Mineralogy and Petrology. 1991. V. 107. P. 27–40.
  20. Иванов К. С., Пучков В. Н. Структурно-формационные зоны Уральского складчатого пояса: обзор данных и развитие новых идей // Геотектоника. 2022. № 6. С. 78–113.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Geological scheme of the ore occurrence of the Voikaro- Synyinsky massif (Polar Urals), according to [8]. Standard designations: 1-3 – rocks of the metamorphosed dunite-harzburgite complex: 1 – with a dunite component content of 10-30%; 2 – with a dunite component content of 30-50%; 3 – with a dunite component content of more than 50%; 4 – dunites; 5 – quaternary deposits; 6 – gabbro vein; 7 – tectonic disturbances; 8 – streams; 9 – lakes; 10 – the site of the discovery of titanium-containing hydroxylclinohumite.

Download (913KB)
3. Fig. 2. Chromitite of orbicular texture. The ore mining phenomenon of Paita, the Voykaro- Synyinsky massif, the Polar Urals. The length of the photo field is 5 cm.

Download (571KB)
4. Fig. 3. Fusion of olivine with clinohumite in chromite; Fo – forsterite, Hchu – hydroxylclinohumite, Mchr – magnesiochromite, Clc – clinochlorite. Photo of a polished strip, without an analyzer.

Download (1MB)
5. Fig. 4. Olivine in fusion with hydroxylclinohumite: a) – a map in the rays of titanium (light – clinohumite, black – olivine); b) – a map of the lines of clinohumite 742+783 cm‑1 on the Raman spectrum (yellow – clinohumite).

Download (540KB)
6. Fig. 5. The correlation diagram of titanium from the sum of divalent cations in the crystal chemical formula of titanium-containing clinohumites (according to [5]). Legend: 1 – from the serpentinites of the Ki- Thai Tien Shan; 2 – from kimberlites of the USA; 3 – from marbles of the eastern Alps; 4 – from ophiolites of the western Alps; 5 – from serpentinites of Spain; 6 – from serpentinites of Italy; 7 – from UHP-metamorphites Italy. The asterisks show our data.

Download (165KB)
7. Fig. 6. Raman Raman spectrum of hydroxylclinohumite from chromitites (the initial spectrum is shown in black , the Lorentz components are shown in green, the envelope of the Lorentz components is shown in red).

Download (668KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies