P-T paths of cooling and metamorphism under conditions of low-grade amphibolite facies in the xenoliths of granulites in the Siberian craton

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the results of detailed petrological studies of mafic granulites from the Yubileinaya and Novinka kimberlite pipes, where retrograde metamorphic P-T paths were reconstructed for the first time using mineral geothermobarometry. These P-T paths demonstrate subisobaric cooling of the rocks from the P-T conditions of lower granulite facies to lower amphibolite facies in the middle crust depth. It was found that compositions of garnet, clinopyroxene, and orthopyroxene depend on the contacting mineral, reflecting the different temperatures closure temperatures of the exchange mineral reactions. The higher temperatures are determined using a two-pyroxene geothermometer, while lower ones are determined using garnet-clinopyroxene and garnet-orthopyroxene geothermometers. Using phase equilibria modeling we obtained thermodynamic conditions corresponding to the lower amphibolite facies: 540 °C, 0.76 GPa, lgfO2 = QFM + 1.7 (Yubileinaya pipe); 530 °C, 0.72 GPa, lgfO2 = QFM + 2.2 (Novinka pipe). The stability of the granulite paragenesis garnet+clinopyroxene+orthopyroxene+plagioclase under such P-T conditions is poorly known phenomenon that mirror a deficit of aqueous fluid during the crystallization of gabbro melts and their subsequent cooling in deep areas of cratons.

Full Text

Restricted Access

About the authors

V. M. Grigorieva

Moscow State University

Author for correspondence.
Email: dannaukiozemle@yandex.ru

Department of Petrology and Volcanology, Geological Faculty

Russian Federation, Moscow

A. L. Perchuk

Moscow State University; Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences

Email: dannaukiozemle@yandex.ru

Department of Petrology and Volcanology, Geological Faculty

Russian Federation, Moscow; Chernogolovka

V. S. Shatsky

Sobolev Institute of Geology and Mineralogy

Email: dannaukiozemle@yandex.ru

academician

Russian Federation, Novosibirsk

N. G. Zinovieva

Moscow State University

Email: dannaukiozemle@yandex.ru

Department of Petrology and Volcanology, Geological Faculty

Russian Federation, Moscow

References

  1. Bohlen S. R., Mezger K. Origin of granulite terranes and the formation of the lowermost continental crust // Science. 1989. V. 244. № 4902. P. 326–329.
  2. Brown M., Johnson T. Time’s arrow, time’s cycle: Granulite metamorphism and geodynamics // Mineralogical Magazine. 2019. V. 83. № 3. P. 323–338.
  3. Rudnick R. L. Making continental crust // Nature. 1995. V. 378. № 6557. P. 571–578.
  4. Koreshkova M. Y., et al. Petrology and geochemistry of granulite xenoliths from Udachnaya and Komsomolskaya kimberlite pipes, Siberia // Journal of Petrology. 2011. V. 52, № 10, P. 1857–1885.
  5. Jin T., et al. Water content and deformation of the lower crust beneath the Siberian Craton: evidence from granulite xenoliths // The Journal of Geology. 2021. V. 129. № 5. P. 475–498.
  6. Shatsky V. S., et al. Features of the Structures and Evolution of the Lower Part of the Continental Crust of the Yakutian Diamondiferous Province within the Upper Muna Kimberlite Field // Doklady Earth Sciences. 2022. V. 507. Suppl 3. P. S365–S374.
  7. Perchuk A. L., et al. Reduced amphibolite facies conditions in the Precambrian continental crust of the Siberian craton recorded by mafic granulite xenoliths from the Udachnaya kimberlite pipe, Yakutia // Precambr. Res. 2021. V. 357. P. 106122.
  8. Holland T. J.B., Powell R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids // Journal of metamorphic Geology. 2011. V. 29. № 3. P. 333–383.
  9. Holland T. J.B., et al. Melting of peridotites through to granites: a simple thermodynamic model in the system KNCFMASHTOCr // Journal of Petrology. 2018. V. 59. № 5. P. 881–900.
  10. Fuhrman M. L., Lindsley D. H. Ternary-feldspar modeling and thermometry // American mineralogist. 1988. V. 73. № 3–4. P. 201–215.
  11. Green E. C.R., et al. Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks // Journal of Metamorphic Geology. 2016. V. 34. № 9. P. 845–869.
  12. Krogh E. J. The garnet-clinopyroxene Fe-Mg geothermometer – a reinterpretation of existing experimental data // Contributions to Mineralogy and Petrology. 1988. V. 99. P. 44–48.
  13. Harley S. L. An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene // Contributions to Mineralogy and Petrology. 1984. V. 86. № 4. P. 359–373.
  14. Лаврентьева И. В., Перчук Л. Л. Ортопироксен-гранатовый термометр: эксперимент и теоретическая обработка банка данных //Доклады АН СССР. 1990. Т. 310. № 1. С. 179.
  15. Wells P. R.A. Pyroxene Thermometry in Sample and Complex System // Contributions to Mineralogy and Petrology. 1977. V. 62. P. 129–139.
  16. Bertrand P., Mercier J. C.C. The mutual solubility of coexisting ortho-and clinopyroxene: toward an absolute geothermometer for the natural system? // Earth and Planetary Science Letters. 1985. V. 76. № 1–2. P. 109–122.
  17. Harley S. L. The solubility of alumina in orthopyroxene coexisting with garnet in FeO-MgO – Al2O3—SiO2 and CaO – FeO – MgO – Al2O3—SiO2 // Journal of Petrology. 1984. V. 25. № 3. P. 665–696.
  18. Eckert J. O., et al. The ΔH of reaction and recalibration of garnet-pyroxene-plagioclase-quartz geobarometers in the CMAS system by solution calorimetry // American Mineralogist. 1991. V. 76. P. 148–160.
  19. Shatsky V. S., et al. Tectonothermal evolution of the continental crust beneath the Yakutian diamondiferous province (Siberian craton): U–Pb and Hf isotopic evidence on zircons from crustal xenoliths of kimberlite pipes // Precambrian Research. 2016. V. 282. P. 1–20.
  20. Perchuk A. L., et al. Precambrian ultra-hot orogenic factory: Making and reworking of continental crust // Tectonophysics. 2018. V. 746. P. 572–586.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Petrographic and microstructural features of xenoliths of granulites: (a–b) – Jubilee tube (model YUB‑19-05); (g–e) – Novelty (model H‑19-44). a) scan of the surface of the plume; b) optical image of the section of the plume; c) decay lamellae in clinopyroxene in the image in backscattered (BSE) electrons; d) scan of the surface of the plume; e) garnet edges at the boundary of clinopyroxene and plagioclase in the image in backscattered electrons; f) decay lamellae in clinopyroxene, optical image.

Download (1MB)
3. Fig. 2. a) compositions of clino-(Cpx) and orthopyroxenes (Opx) in a sample from the Yubileynaya tube (YUB‑19-05) on a fragment of the Di-Hd- En- Fs trapezoid; b) compositions of Cpx and Opx in sample H‑19-44 on a fragment of a trapezoid Di-Hd- En- Fs; c) the compositions of garnets (Grt) of samples YB‑19-05 and H‑19-44 on a fragment of the triple diagram Grs-Prp- Alm. The more magnesian compositions of Cpx correspond to the contact zones with Grt, the more ferruginous ones correspond to Opx; similar differences in the compositions of the edge parts of the grains, depending on the contacting mineral, are recorded for Opx and Grt.

Download (432KB)
4. Fig. 3. Phase P-T and T-fO2 diagrams for granulites from Jubilee tubes (YUB‑19-05) and Novinka (H‑19-44) calculated using Perple_X. a) T-fO2 diagrams at 0.8 GPa for sample YB‑19-05; b) P-T diagram for sample YB‑19-05; c) T-fO2 diagrams at 0.75 GPa for sample H‑19-44; d) P-T diagram for sample H‑19-44. The blue color shows the field of rock paragenesis. The yellow star marks the intersection of the isoplanes corresponding to the composition of the minerals of the rock (indicated in the lower right corner of the PT diagrams). Effective compositions are indicated above the diagrams. Isoplets: XMg Grt = Mg/(Mg+Fetot); XCa Grt = Ca/(Ca+Mg+Fetot); XMg Cpx = Mg/(Mg+Fetot); Fe3+Cpx = Fe3+ (F. E.); XMg Opx = Mg/(Mg+Fetot); AlOpx = Al (F. E.); XCa Pl = Ca/(Ca+Na).

Download (1MB)
5. Fig. 4. P-T conditions for the formation of granulites from Jubilee tubes (YUB‑19–05) (a) and Novinka (H‑19-44) (b) by methods of geothermobarometry and modeling of phase equilibria. Used Mineral Equilibria: Grt– Cpx- (red line), Grt–Opx- (green lines), Cpx–Opx- (blue lines) geothermometers and Grt–Opx- (light green line), Grt–Cpx–Pl–Q- (black lines) barometers for average compositions of marginal parts of minerals. The fields of the established P-T conditions are highlighted in green and yellow. Arrows are supposed P-T trends of metamorphism. K88 – Krogh (1988); E91 – Eckert, et al. (1991); W77 – Wells (1977); BM85 – Bertrand, Mercier (1985); H84 – Harley (1984); H84a – Harley (1984); LP90 – Lavrentieva, Perchuk (1990).

Download (544KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies