Spinel lherzolites of the Northern Kraka massif (Southern Urals): first REE ID-ICP-MS,87Sr/86Sr AND147Sm-143Nd AL ID-TIMS isotope constrains

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results of a REE ID-ICP-MS,86Sr/87Sr and147Sm-143Nd AL ID-TIMS study of the isotope systematics of spinel lherzolites from the northern Kraka massif, which is part of the largest (more than 900 km2) lherzolite allochthon thrust over the bathyal and shelf deposits of the passive continental margin, East European platform are presented. As a result, an isochron dependence (MSWD = 0.85) was revealed for the first time, which determines the age of 545±26 Ma and the high value of the initial ratio (143Nd/144Nd)0 = 0.512390±0.000054, corresponding, within the framework of model representations, to εNd = +8.9. The resulting REE,87Sr/86Sr, and147Sm-143Nd isotopic signatures indicate the melting of an already depleted protolith, which can be identified as a mantle source, with MORB-like parameters. The isochron age calculated in the framework of the147Sm-143Nd AL ID-TMS study, in combination with the available complex of geological and geochemical data, allows us to state the manifestation of the Late Vendian phase (epoch) of folding and orogeny in the Urals in the interval of 545 ± 26 Ma. Comparison of these data with materials on the geology of Central and Western Europe makes it possible to correlate the Timanid structures formed as a result of this phase of folding with Cadomides, which ultimately, based on global reconstructions of continents for the end of the Proterozoic, will authorize the hypothesis of the existence of the Cadomian orogen on the periphery of Gondwana.

全文:

受限制的访问

作者简介

Yu. Ronkin

Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: y-ronkin@mail.ru
俄罗斯联邦, Yekaterinburg

I. Chashchukhin

Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences

Email: y-ronkin@mail.ru
俄罗斯联邦, Yekaterinburg

V. Puchkov

Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences

Email: y-ronkin@mail.ru

Corresponding Member of the RAS

俄罗斯联邦, Yekaterinburg

参考

  1. Аникина Е. В., Русин И. А., Русин А. И., Краснобаев А. А. Изотопно-геохимическая систематика циркона из ультрабазитов массива Узянский Крака // Труды Института геологии и геохимии им. академика А. Н. Заварицкого. 2014. № 161. С. 158‒166.
  2. Краснобаев А. А., Русин А. И., Русин И. А., Бушарина С. В. Цирконы, цирконовая геохронология и вопросы петрогенезиса лерцолитовых массивов Южного Урала // Геохимия. 2011. Т. 5. С. 506–522.
  3. Пучков В. Н. Палеогеодинамика Южного и Среднего Урала. Уфа: Даурия, 2000. 146 с.
  4. Ронкин Ю. Л., Журавлев Д. З., Лепихина О. П., Лепихина Г. А. Определение ультрамалых содержаний REE в геологических образцах ID-SF-HR/ICP-MS методом: на примере стандартных образцов дунита и перидотита / Ежегодник-2007. Информационный сборник научных трудов ИГГ УрО РАН. Екатеринбург. 2008. С. 409‒420.
  5. Bodinier J.-L., Godard M. Orogenic, Ophiolitic, and Abyssal Peridotites. Treatise on Geochemistry. 2007. 1–73. doi: 10.1016/b0-08-043751-6/02004-1
  6. Bodinier J. L., Dupuy C., Dostal J. Geochemistry and petrogenesis of Eastern Pyrenean peridotites // Geochimica et Cosmochimica Acta. 1988. 52(12), 2893– 2907. doi: 10.1016/0016-7037(88)90156-1
  7. Boudier F., Nicolas A. Harzburgite and lherzolite subtypes in ophiolitic and oceanic environments // Earth Planet. 1985. Sci. Lett. 76. 84–92.
  8. Dalziel I. W. D. On the organization of American plates in the Neoproterozoic and the breakout of Laurentia // GSA Today. 1992. V. 2. No. 11. P. 237–241.
  9. Downes H., Bodinier J.-L., Thirlwall M. F., Lorand J.-P., Fabries J. REE and Sr-Nd Isotopic Geochemistry of Eastern Pyrenean Peridotite Massifs: Sub-Continental Lithospheric Mantle Modified by Continental Magmatism // Journal of Petrology. 1991. Special_Volume 2. 97–115. doi: 10.1093/petrology/special_volume.2.97
  10. Garrido C. J., Bodinier J.-L., Alard O. Incompatible trace element partitioning and residence in anhydrous spinel peridotites and websterites from the Ronda orogenic peridotite // Earth and Planetary Science Letters. 2000. 181(3), 341–358. doi: 10.1016/s0012-821x(00)00201-6
  11. Grunow A., Hanson R., Wilson T. Were aspects of Pan-African deformation linked to Iapetus opening // Geology. 1996. 24(12), 1063‒1066. doi: 10.1130/0091-7613(1996)024<1063: waopad>2.3.co;2
  12. Ludwig K. R. User’s Manual for Isoplot/EX ver. 3.6. Berkeley Geochronology Center, Special Publication. 2008. No. 4, CA. 77 pp.
  13. Puchkov V. N. Structure and geodynamics of the Uralian orogen / In Orogeny Through Time. Published by The Geological Society London. Ed. J.-P. Burg and M. Ford. P. 201–236. doi: 10.1144/gsl.sp.1997.121.01.09
  14. Reisberg L. C., Allègre C. J., Luck J.-M. The Re–Os systematics of the Ronda ultramafic complex of southern Spain // Earth Planet. Sci. Lett. 1991.105. 196–213.
  15. Ronkin Y. L., Karaseva T. V., Maslov A. V. The First147Sm-143Nd Data on Rocks from the 6925.2- to 8250-m Interval of the SG-7 Superdeep Borehole (West Siberian Oil-and-Gas Province) // Dokl. Earth Sc. 2021. 496. P. 130–134 https://doi.org/10.1134/S1028334X2102015X
  16. Saintot A., Stephenson R. A., Stovba S., Brunet M.-F., Yegorova, T., Starostenko V. The evolution of the southern margin of Eastern Europe (Eastern European and Scythian platforms) from the Latest Precambrian- Early Palaeozoic to the Early Cretaceous // Geological Society, London, Memoirs. 2006. 32(1), 481–05. doi: 10.1144/gsl.mem. 2006.032.01.30
  17. Saveliev D. Е., Shilovskikh V. V., Makatov D. K., Gataullin R. A. Accessory Cr-spinel from peridotite massifs of the South Urals: morphology, composition and origin // Mineralogy and Petrology. 2022. 116, 401–427.
  18. Stump E. Construction of the Pacific margin of Gondwana during the Pannotios cycle, in McKenzie, G. D., ed., Gondwana Six: Stratigraphy, sedimentology, and paleontology // American Geophysical Union Geophysical Monograph. 1987. 41. P. 77–87.
  19. Tessalina S. G., Bourdon B., Gannoun A., Capmas F., Birck J.-L., Allègre C. J. Complex proterozoic to paleozoic history of the upper mantle recorded in the Urals lherzolite massifs by Re–Os and Sm–Nd systematics // Chemical Geology, 2007. 240(1–2), 61– 84. doi: 10.1016/j.chemgeo.2007.02.006
  20. Torsvik T., Smethurst M., Meert J., Vandervoo R., Mckerrow W., Brasier M., Sturt B. A., Walderhaug H. Continental break-up and collision in the Neoproterozoic and Palaeozoic – A tale of Baltica and Laurentia // Earth-Science Reviews. 1996. 40(3–4), 229–258. doi: 10.1016/0012-8252(96)00008-6.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. a – localization of the Ural folded belt; b – scheme of structural and tectonic zoning of the Urals [13] with additions; c – Krak massifs: 1 – Northern; 2 – Uzyansky; 3 – Middle; 4 – Southern; d – distribution of ultrabasic rocks in the Southern Urals. Belts of ultrabasic rocks: 1 – Western (Kraka–Mednogorsky); 2 – Zone of the Main Ural fault; 3 – Miass-Kulikovskiy; 4 – Kazbaevo; 5 – Vostochny. Massifs of ultramafic rocks [13, 17]: 1 – Kraka (contribution "to"); 2 – Ufaley; 3 – Talovsky; 4 – Muslyumovo; 5 – Nurali; 6 – Kalkan; 7 – Mindyak; 8 – Kulikovsky; 9 – Tatishchevo; 10 – Camel Mountain; 11 – Varshavka; 12 – Khalilovo; 13 – Khabar; 14 – Kempirsai; 15 – Ak- karga; 16 – Kiembai. The colors highlight various structural zones: BM – Bashkir Meganticlinorium; EUT – East Ural trough; EUU – East Ural uplift; MM-Magnitogorsk megazone; MUF – Main Ural fault; SB – Sakmar basin; TUU -Trans–Ural uplift; ZS – Zilair synclinorium.

下载 (1MB)
3. Fig. 2. Schematic geological map of northern Krak. 1 – Zilair series ‒ polymictic sandstones, siltstones, clay shales D3-C1; 2 – limestones with interlayers of sandstones and clay shales D2–3; 3 – quartz sandstones, siltstones, clay and siliceous shales S2; 4 - clay and siliceous shales, quartz sandstones, siltstones S1; 5 – quartz sandstones, siliceous and clay shales O2–3; 6 – Spinel facies of the harzburgite-lherzolite series; 7 – Plagioclase facies of the harzburgite-lherzolite series; 8 – Chrysotile-lizardite serpentinites; 9 – Polymictic serpentinite melange; 10 – sampling sites; 11 – sample 7511, starboard side of Bolshaya Creek Sargaya.

下载 (663KB)
4. Fig. 3. Porphyroclastic structure of spinel lherzolite (model 7511). (a) ‒ orthopyroxene-clinopyroxene porphyroclast surrounded by pyroxene and olivine neoblasts. Attention is drawn to thin plates – products of porphyroclast decomposition: clinopyroxene in orthopyroxene (Opx) and orthopyroxene in clinopyroxene (Cpx). The peripheral zones of porphyroclasts are partially cleared of decay plates, the material of which was spent on the formation of neoblasts. Unlike pyroxenes, olivine (Olv) is easily dispersed and, as a rule, forms neoblasts. (b) is a clinopyroxene porphyroclast (Cpx) surrounded by pyroxene and olivine neoblasts. (c) ‒ chains of chrome spinel grains (Sp) formed during plastic deformations. (d) ‒ Apopyropic (?) spinel-orthopyroxene cluster – product of the reaction “pyrope + 2olivine = = 4ortopyroxene + spinel”, transformed into porphyroclast during deformations.

下载 (2MB)
5. Fig. 4. REE distribution spectra in lherzolites. Thin colored lines are the lherzolites of the eastern Peaks [6]. The red thickened line characterizes the REE distribution spectrum of the sample studied in this work. The remaining thickened colored lines are lherzolites of the Mindyak and Nurali massifs , Yu. Ural, the sample numbers correspond to those from Table 1 [19]. CWr, CCh – REE concentrations in the rock (ppm, indicated in red numbers along the abscissa axis) and chondrite, respectively. Normalization coefficients according to [IX].

下载 (303KB)
6. Fig. 5. 147Sm‑143Nd is an evolutionary diagram for the lherzolite 7511 of the Northern Kraka massif (Fig. 2). The dimensions of the rectangles are proportional to the values ±2σ of the atomic ratios 147Sm/144Nd and 143Nd/144Nd. Wr is the breed as a whole, Opx is ortho- pyroxene, Cpx is clinopyroxene. The lower index “AL” identifies the differences subjected to acid leaching. MSWD Mean Square of Weighted Deviates. The CHUR parameters are indicated in the caption to Table 2. DM:147Sm/144Nd = 0.2135, 143Nd/144Nd = 0.513151 [X].

下载 (258KB)
7. Fig. 6. Correlation diagram 87SG/86Sr‑143Nd/144Nd for the lherzolite of the Northern Kraka massif (blue circle) and clinopyroxenites isolated from orogenic, ophiolite and abyssal peridotites, pyroxenites Horoman, Lower Austria, Ronda, Pyrenees, Western Alps (Balmuccia, Lanzo, and the External Ligurides), Zabargad, Internal Ligurides, as well as for oceanic peridotites [5]. Mid-Ocean Ridge Basalt (MORB) from the Petrological database Database of the Ocean Floor (PetDB https://wiki5.ru/wiki/Petrological_Database_of_the_Ocean_Floor). Ocean-Island Basalt (OIB) from the Geochemistry of Rocks of the Oceans and Continents (GEOROC) database https://georoc.eu/georoc / new-start.asp, data for French Polynesia, Iceland, Hawaii, Galapagos Islands and Bouvet). I, II, III, IY are the quadrants highlighted (gray horizontal and vertical lines) relative to the isotopic composition of Sr and Nd of the CHUR model reservoir (parameters are indicated in the note to Table 2).

下载 (540KB)
8. 7. Geologically determined reconstruction of the supercontinent Pannotia, which probably existed near the Precambrian-Cambrian boundary, 600-540 million years ago [8]. The Pan-African-Brazilian (Pannotic; [18]) basins are shown to be closed, although some of them may have survived until the Cambrian ([11]). It is noteworthy that the authors [20] interpreted the paleomagnetic data as requiring the separation of Laurentia and Gondwana by more than 5,000 km at the Precambrian-Cambrian boundary. The interpretation is based primarily on geological arguments, since the paleomagnetic poles shown do not confirm such a close proximity of Laurentia and Gondwana [8]. Pacific ocean – Pacific Ocean; Extensional margin – expansion of the eastern margin of the Pacific Ocean; East Gondwana – the eastern part of the Gondwana supercontinent; Laurentia – the Lawrence supercontinent; Cadomian arc – the Kadoma magmatic arc; A – Arequipa massif; AM –Amazonian craton; B – Baltica (Russian craton); C– Congo craton; D-R-A – Delamerian-Ross

下载 (1MB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##