Tectonothermal model and magmatism evolution of the postcollisional (pre-plume) development stage of the Kara orogen (Northern Taimyr, Central Arctic)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider a tectonothermal model and the evolution of magmatism during the late Paleozoic postcollisional (pre-plume) development stage of the Kara orogen in northern Taimyr, Central Arctic. The model is based on new and published structural, petrologic, geochemical and geochronological data, as well as thermophysical parameters obtained for the Kara orogen that includes great amounts of syncollisional and postcollisional granites formed due to the collision of the Kara microcontinent and the Siberian craton. Based on geological, geochemical and U–Th–Pb isotope data, the granites have been differentiated into syncollisional and postcollisional intrusions formed 315–282 Ma and 264–248 Ma respectively. Our previously published tectonothermal model [1] concerned the syncollisional formation stage of the Kara orogen at 315–282 Ma, during which the emplacement of anatectic granites took place. In this new study, we focus on the evolution of postcollisional magmatism in the orogen at the Permian–Triassic boundary. The existence of multiple bodies of allochthonous granitoids aged 265–248 Ma in the Kara orogen that predate the extensive eruption of the Siberian traps (~250 Ma) motivates us to reconstruct the thermal state and melting mechanisms of the crust on the “pre-plume” stage. To solve this problem, numerical modeling of the thermal, tectonic and magmatic evolution of the Kara orogen’s crust is used alongside geochemical and isotope data reflecting the magmatic sources of the granitoids.

Full Text

Restricted Access

About the authors

V. A. Vernikovsky

Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: MatushkinNY@ipgg.sbras.ru

Academician of the RAS

Russian Federation, Novosibirsk; Novosibirsk

A. N. Semenov

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences

Email: MatushkinNY@ipgg.sbras.ru
Russian Federation, Novosibirsk

O. P. Polyansky

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences

Email: MatushkinNY@ipgg.sbras.ru
Russian Federation, Novosibirsk

A. V. Babichev

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences

Email: MatushkinNY@ipgg.sbras.ru
Russian Federation, Novosibirsk

A. E. Vernikovskaya

Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: MatushkinNY@ipgg.sbras.ru
Russian Federation, Novosibirsk; Novosibirsk

N. Yu. Matushkin

Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Author for correspondence.
Email: MatushkinNY@ipgg.sbras.ru
Russian Federation, Novosibirsk; Novosibirsk

References

  1. Верниковский В. А., Полянский О. П., Бабичев А. В., Верниковская А. Е., Проскурнин В. Ф., Матушкин Н. Ю. Тектонотермальная модель для позднепалеозойского синколлизионного этапа формирования Карского орогена (Северный Таймыр, Центральная Арктика) // Геология и геофизика. 2022. Т. 63. № 4. С. 440–457.
  2. Vernikovsky V. A., Vernikovskaya A., Proskurnin V., Matushkin N., Proskurnina M., Kadilnikov P., Larionov A., Travin A. Late Paleozoic – Early Mesozoic Granite Magmatism on the Arctic Margin of the Siberian Craton during the Kara-Siberia Oblique Collision and Plume Events // Minerals. 2020. V. 10(6). 571. http://dx.doi.org/10.3390/min10060571
  3. Renne P. R., Basu A. R. Rapid eruption of the Siberian Traps flood basalts at the Permo–Triassic Boundary // Science. 1991. V. 253(5016). P. 176–179. https://doi.org/10.1126/science.253.5016.176
  4. Баданина И. Ю., Малич К. Н., Романов А. П. Изотопно-геохимические характеристики рудоносных ультрамафит-мафитовых интрузивов западного Таймыра (Россия) // ДАН. 2014. Т. 458. № 3. С. 327–329.
  5. Augland L. E., Ryabov V. V., Vernikovsky V. A., Planke S., Polozov A. G., Callegaro S., Jerram D. A., Svensen H. H. The main pulse of the Siberian Traps expanded in size and composition // Sci. Rep. 2019. V. 9. 18723. https://doi.org/10.1038/s41598-019-54023-2
  6. Vernikovsky V. A., Pease V. L., Vernikovskaya A. E., Romanov A. P., Gee D. G., Travin A. V. First report of early Triassic A-type granite and syenite intrusions from Taimyr: product of the northern Eurasian superplume? // Lithos. 2003. V. 66(1–2). P. 23–36. https://doi.org/10.1016/S0024-4937(02)00192-5
  7. Priestley K., McKenzie D. The relationship between shear wave velocity, temperature, attenuation and viscosity in the shallow part of the mantle // Earth and Planet. Sci. Lett. 2013. V. 381. P. 78–91. https://doi.org/10.1016/j.epsl.2013.08.022
  8. Кашубин С. Н., Петров О. В., Шокальский С. П., Мильштейн Е. Д., Андросов Е. А., Винокуров И. Ю., Тарасова О. А. Глубинное строение земной коры северо-восточной Евразии и ее континентальных окраин // Геодинамика и тектонофизика. 2021. Т. 12(2). С. 199–224. https://doi.org/10.5800/GT-2021-12-2-0521
  9. Верниковский В. А. Геодинамическая эволюция Таймырской складчатой области / Труды ОИГГМ; Вып. 831. Новосибирск: Изд. СО РАН НИЦ ОИГГМ, 1996. 202 с.
  10. Дучков А. Д., Лысак С. В., Балобаев В. Т. и др. Тепловое поле недр Сибири. Ред. Э. Э. Фотиади. Труды ИГиГ СО АН СССР; Вып. 681. Новосибирск: Наука, 1987. 196 с.
  11. Sobolev S. V., Sobolev A. V., Kuzmin D. V., Krivolutskaya N. A., Petrunin A. G., Arndt N. T., Radko V. A., Vasiliev Y. R. Linking mantle plumes, large igneous provinces and environmental catastrophes // Nature. 2011. V. 477. P. 312–316. https://doi.org/10.1038/nature10385
  12. Bea F. The sources of energy for crustal melting and the geochemistry of heat-producing elements // Lithos. 2012. V. 153. P. 278–291. https://doi.org/10.1016/j.lithos.2012.01.017
  13. Ларичев А. И., Бостриков О. И., Хабаров А. Н. Условия нефтегазообразования, формирования и разрушения скоплений УВ и прогноз нефтегазоносности в пермских отложениях Восточно-Таймырского лицензионного участка (Анабаро-Хатангская НГО). // Геология и геофизика. 2023 (в печати).
  14. Семенов А. Н., Полянский О. П. Численное моделирование механизмов минглинга и миксинга магмы на примере формирования сложных интрузивов // Геология и геофизика. 2017. Т. 58. № 11. С. 1664–1683.
  15. Полянский О. П., Изох А. Э., Семенов А. Н., Селятицкий А. Ю., Шелепаев Р. А., Егорова В. В. Термомеханическое моделирование формирования многокамерных интрузий для выявления связи плутонометаморфизма с габбро-диоритовыми массивами Западного Сангилена, Тува, Россия // Геотектоника. 2021. № 1. С. 3–22.
  16. Ranalli G. Rheology of the Earth. London: Chapman & Hall, 1995. 413 p.
  17. Miller C. F., McDowell S.M., Mapes R. W. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance // Geology. 2003. V. 31(31). P. 529– 532. https://doi.org/10.1130/00917613(2003)031%3C0529: HACGIO%3E2.0.CO;2
  18. Rosenberg C. L., Handy M. R. Experimental deformation of partially melted granite revisited: implications for the continental crust // J. Metamorphic Geol. 2005. V. 23(1). P. 19– 28. https://doi.org/10.1111/j.1525-1314.2005.00555.x
  19. O’Reilly S.Y., Griffin W. L. Moho vs crust–mantle boundary: Evolution of an idea // Tectonophysics. 2013. V. 609. P. 535–546. https://doi.org/10.1016/j.tecto.2012.12.031
  20. Верниковская А. Е., Верниковский В. А., Матушкин Н. Ю., Кадильников П. И., Вингейт М. Т.Д., Богданов Е. А., Травин А. В. А-граниты криогения Енисейского кряжа – индикаторы тектонической перестройки в юго-западном обрамлении Сибирского кратона // Геология и геофизика. 2023. Т. 64. № 6. С. 783–807.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Geological and physical introductory parameters of the model: simplified geological structure of the Kara orogen with the position and age of granitoid arrays (a); 2‑dimensional diagram of the structure of the modeling area along the yellow line on (a), block geometry (dimensions – off-scale) and temperature boundary conditions (b), temperature field on the moment of the end of the collision, taken as the initial one for the problem under consideration (c). Q (mantle) is the mantle heat flux, q is heat release due to radioactive sources in the crust. The red lines are the boundaries of the blocks in the model.

Download (1MB)
3. Fig. 2. Calculation results at the time of the action of the increased heat flow after 1.2 million years (age ~264 million years), showing the distribution of temperature, density of matter (2600 corresponds to 25% of the melt, 2800 is the density of the solid crust), the fraction of the melt in the magma, the fraction of the mantle component.

Download (397KB)
4. Fig. 3. Calculation results at the time of the action of the increased heat flow after 11 million years (age ~252 million years), showing the distribution of temperature, density of matter, fraction of melt in magma, fraction of mantle component (with a modified scale).

Download (383KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies