Tectonic displacements of the Nansen basin sedimentary cover: causes and consequences

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It is established that faults in the sedimentary cover of the Nansen basin and seismic anomalies of the “flat spot” type associated with the methane accumulation are grouped into three spatial combinations: 1 – synchronized faults and spots, 2 – spots without faults, 3 – faults without spots. They are distributed mainly between linear magnetic anomalies C20 and C12 over negative variations of the lithosphere density with depths up to ~25–30 km and lateral periodicity ~50 km. The genesis of combination 1 is provided by serpentinization of upper mantle rocks in the presence of water that has depth penetration through previously formed tectonic displacements, an increase in the rock volume and local rise of crystalline blocks, leading to the formation of faults of thrust kinematics, crossing the entire sedimentary cover from the acoustic basement to the ocean bottom. Combination 2 consists in the predominance of “flat spots” also of fluid genesis in the absence of faults, which, with a rare seismic observations, may be missed and not appear in the plane of the sections. Combination 3 consists in the presence of faults without “flat spots” with a spatial step of ~ 10 km above the highs of the acoustic basement. In the Bouguer anomalies this combination is manifested over ~80 km depression of ~25 mGal depth, comparable to the gravity depth under the axis of the Gakkel ridge. This is not due to the linear structure of the ridge, but, perhaps, to a single upper mantle plume. From this follows the mechanism of faults formation above it, associated not with serpentinization, but with the rise of the plume body to the surface. Physical modeling of the structure formation during the slowdown of the spreading rate, which took place in the range C20–C12, showed that the amplitude of the relief drops increases greatly. Comparison with a real acoustic basement shows the similarity of its relief in the corresponding time intervals of spreading slowdown with the areas of relief change in the physical model. The increase in the amplitudes of the basement highs is most likely due to the formation of faults that provide the circulation of water necessary for serpentinization.

Full Text

Restricted Access

About the authors

S. Yu. Sokolov

Geological Institute Russian Academy of Sciences

Author for correspondence.
Email: sysokolov@yandex.ru
Russian Federation, Moscow

G. D. Agranov

Geological Institute Russian Academy of Sciences; Lomonosov Moscow State University

Email: sysokolov@yandex.ru

Earth Science Museum

Russian Federation, Moscow; Moscow

V. A. Kulikov

Lomonosov Moscow State University

Email: sysokolov@yandex.ru

Geological Faculty

Russian Federation, Moscow

A. V. Zayonchek

Geological Institute Russian Academy of Sciences

Email: sysokolov@yandex.ru
Russian Federation, Moscow

A. L. Grokholsky

Lomonosov Moscow State University

Email: sysokolov@yandex.ru

Earth Science Museum

Russian Federation, Moscow

References

  1. Арктический бассейн (геология и морфология) / под ред. В. Д. Каминского, А. Л. Пискарева, В. А. Поселова. СПб.: ВНИИОкеангеология, 2017. 291 с.
  2. Грохольский А. Л., Дубинин Е. П., Агранов Г. Д., Барановский М. С., Данилов Я. А., Доманская П. А., Максимова А. А., Макушкина А. И., Ращупкина А. О., Толстова А. И., Филаретова А. Н., Шепталина Ю. А., Щербакова Е. Л. Физическое моделирование структурообразующих деформаций в лабора-тории экспериментальной геодинамики Музея Землеведения МГУ (к ٤٠-летию создания лаборатории) // Жизнь Земли. ٢٠٢٠. Т. 42. № 4. С. 485–501. doi: 10.29003/m1778.0514- 7468.2020_42_4/485-501
  3. Дмитриев Л. В., Базылев Б. А., Силантьев С. А., Борисов М. В., Соколов С. Ю., Буго А. Образование водорода и метана при серпентинизации мантийных гипербазитов океана и происхождение нефти // Российский журнал наук о Земле. 1999. Т. 1. № 6. С. 511–519.
  4. Зайончек А. В., Меркурьев С. А. Новые результаты идентификации линейных магнитных аномалий западной части котловины Нансена и их применение при сейсмостратиграфическом анализе // Геология морей и океанов. Материалы XXIV Международной научной конференции (Школы) по морской геологии. Т. IV. М.: ИО РАН, 2021. С. 70–74. ISBN 978-5-6045110-7-7. doi: 10.29006/978-5-6045110-7-7
  5. Каминский А. Е. Пакет программ ZOND. 2017. (http: // zond-geo.ru)
  6. Никишин А. М., Петров Е. И., Старцева К. Ф., Родина Е. А., Посаментиер Х., Фоулджер Дж., Глумов И. Ф., Морозов А. Ф., Вержбицкий В. Е., Малышев Н. А., Фрейман С. И., Афанасенков А. П., Безъязыков А. В., Доронина М. С., Никишин В. А., Сколотнев С. Г., Черных А. А. Сейсмостратиграфия, палеогеография и палеотектоника Арктического глубоководного бассейна и его российских шельфов. // Труды ГИН. Вып. 632. М.: Геос, 2022. 156 с.
  7. Соколов С. Ю., Geissler W. H., Абрамова А. С., Рыжова Д. А., Патина И. С. “Плоские пятна” в кайнозойских осадках котловины Нансена (Северный Ледовитый Океан): индикаторы процессов серпентинизации, генерации газа и его аккумуляции // Литология и полезные ископаемые. 2023. № 1. С. 3–20. doi: 10.31857/S0024497X22060076
  8. Сорохтин О. Г., Ушаков С. А. Развитие Земли. М.: Изд-во, МГУ, 2002. 560 с.
  9. Хаин В. Е., Ломизе М. Г. Геотектоника с основами геодинамики. М.: КДУ, 2005. 560 с.
  10. Шеменда А. И. Критерии подобия при механическом моделировании тектонических процессов // Геология и геофизика. 1983. № 10. С. 10–19
  11. Яковлев А. В., Бушенкова Н. А., Кулаков И. Ю., Добре- цов Н. Л. Структура верхней мантии Аркти-ческого региона по данным региональной сейсмо-томографии // Геология и геофизика. 2012. Т. 53. № 10. С. 1261–1272
  12. Forsberg R., Skourup H. Arctic Ocean gravity, geoid and sea-ice freeboard heights from ICESat and GRACE // Geophys. Res. Lett. 2005. V. 32. L21502. P. 1–4. doi: 10.1029/2005GL023711
  13. Harrison C. G.A. Power spectrum of sea level change over fifteen decades of frequency // Geochemistry Geophysics Geosystems G3. 2002. V. 3. № 8. P. 1–17. doi: 10.1029/2002GC000300
  14. Jakobsson M., Mayer L., Coakley B., et al. The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0 // Geophys. Res. Lett. 2012. V. 39(12). L12609. P. 1–6.
  15. Nikishin A. M., Gaina C., Petrov E. I., et al. Eurasia Basin and Gakkel Ridge, Arctic Ocean: Crustal asymmetry, ultra-slow spreading and continental rifting revealed by new seismic data // Tectonophysics. 2017. V. 746. № 10. P. 64–82.
  16. Jokat W., Micksch U. Sedimentary structure of the Nansen and Amundsen basins, Arctic Ocean // Geophys. Res. Lett. 2004. V. 31. L02603. doi: 10.1029/2003GL018352.
  17. Qin Y., Singh S. C. Seismic evidence of a two-layer lithospheric deformation in the Indian Ocean // Nature Communications. 2015. V. 6:8298. doi: 10.1038/ncomms9298
  18. Rajan A., Mienert J., Bünz S., Chand S. Potential serpentinization, degassing, and gas hydrate formation at a young (<20 Ma) sedimented ocean crust of the Arctic Ocean ridge system // J. Geophys. Res. 2012. V. 117. B03102. doi: 10.1029/2011JB008537
  19. Shemenda A. I., Grocholsky A. L. Physical modeling of slow seafloor spreading // Journal Geophysical Research. 1994. V 99. P. 9137–9153.
  20. Wallmann K., Pinero E., Burwicz E., et al. The global inventory of methane hydrate in marine sediments: a theoretical approach // Energies. 2012. V. 5. P. 2449–2498.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The study of seismic exploration under the Arctic 2011 project [1, 19] in the western part of the Russian sector of the Nansen basin. The axes of linear magnetic anomalies are given according to [16]. The red line shows the position of the fragment of the seismic section in Fig. 2.

Download (2MB)
3. Fig. 2. Fragment of the Arctic‑2011–06 section. The yellow arrows show the position of the protrusions of the acoustic foundation under the faults in the sedimentary cover. The blue arrow shows a wide ledge of the foundation under a flat spot with deflection of reflectors in the sedimentary cover. The position of the fragment is shown in Fig. 1.

Download (1MB)
4. Fig. 3. Spatial distribution of faults identified by seismic data and the “flat spot” anomaly according to [7]. The Buge anomalies were calculated according to the Arctic Gravity Project [12] on a 2500 m grid grid using the IBCAO v.3 relief [14]. The red lines show the profiles along which the inversion of the gravitational field was calculated (Fig. 4). The profiles are drawn along the position of the seismic sections (Fig. 1) with continuation to the shelf and to the intersection with the Gakkel ridge. The numbers indicate the spatial combinations of anomalies and faults observed in the sections: 1 – faults in combination with flat spots; 2 – flat spots without faults; 3 – faults without flat spots.

Download (1MB)
5. Fig. 4. Calculation of the gravity field inversion along the Arctic seismic sections‑2011 3, 4, 5, 6 ( fig. 1) according to the extended profiles, the position of which is indicated in Fig. 3. The calculation was performed in the ZondGM2D software [5]. The sections of density variations show intersections with linear magnetic anomalies according to [16], faults and flat spots. The red lines show the positions of the section fragment in Fig. 2 and [7, Fig. 4]. The numbers 1, 2 and 3 indicate combinations of anomalies and faults on the map Fig. 3. The gray rectangles show the areas between LMA C20 and C12.

Download (1MB)
6. Fig. 5. Features of structure formation on the southern flank of the Gakkel ridge with a two‑stage deceleration of the spreading rate according to physical modeling data (experiment No. 2737). a – step–by‑step photographs of the structures of the simulated rift in the direction of stretching orthogonal to the primary weakened zone; b ‒ schematic section of the formed relief along line I–II with indication of velocities in the physical model; c ‑ comparison of the relief section with the results of identification of magnetic anomalies for the Arctic‑2011-3 profile, the relief of the foundation and the determination of spreading rates according to the data [4].

Download (614KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies