Age and tectonic setting of the Bambukoy tin-bearing volcano-plutonic assemblage (Barguzin–Vitim superterrane of the Central Asian orogenic belt)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Geochemical, geochronological (U–Pb zircons, ID-TIMS) and isotope-geochemical (Sm–Nd) studies of the rocks of the Bambukoy volcano-plutonic association, which form the Zhanok-Bambukoy volcano-tectonic structure within the Anamakit–Muya terrane on the northern flank of the Barguzin–Vitim superterrane of the East Transbaikalian segment of the Central Asian orogenic belt. The association includes volcanic rocks of the Zhanok Suite (dacites and rhyolites mainly), as well as leucocratic and biotite granites of the Bambukoy Complex that cut through them. The granites of this complex host the Mokhovoe tin deposit, which is attributed to the tin-porphyry formation. Subvolcanic rocks of the Zhanok Suite are considered as ore-bearing. The geochemical features of the volcanic rocks of the Zhanok Suite and the granites of the Bambukoy complex bring them closer to S-type granites, and belonging to a single tin-bearing Bambukoy volcanic-plutonic association. The formation of this association is determined by the age interval 834 ± 23–818 ± 7 Ma. The isotopic data point to a source of parental magmas from the rocks of the Bambukoy volcano-plutonic association, formed as a result of mixing of the material of two crustal sources, the mature Early Precambrian and the juvenile Early Baikal. The geochemical data also point to an exclusively crustal source of the rocks of this association. Thus, the Bambukoy tin-bearing volcano-plutonic association was formed in the Neoproterozoic time (Tonian), most likely under lithospheric extension conditions due to a source with a complex and long crustal prehistory.

Full Text

Restricted Access

About the authors

A. M. Larin

Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences

Author for correspondence.
Email: larin7250@mail.ru
Russian Federation, St. Petersburg

E. Yu. Rytsk

Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences

Email: larin7250@mail.ru
Russian Federation, St. Petersburg

A. B. Kotov

Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences

Email: larin7250@mail.ru

Corresponding Member of the RAS

Russian Federation, St. Petersburg

E. B. Salnikova

Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences

Email: larin7250@mail.ru
Russian Federation, St. Petersburg

V. P. Kovach

Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences

Email: larin7250@mail.ru
Russian Federation, St. Petersburg

T. M. Skovitina

Institute of Earth Crust, Siberian Branch of the Russian Academy of Sciences

Email: larin7250@mail.ru
Russian Federation, Irkutsk

S. D. Velikoslavinskii

Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences

Email: larin7250@mail.ru
Russian Federation, St. Petersburg

Yu. V. Plotkina

Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences

Email: larin7250@mail.ru
Russian Federation, St. Petersburg

N. Yu. Zagornaya

Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences

Email: larin7250@mail.ru
Russian Federation, St. Petersburg

References

  1. Государственная геологическая карта РФ. 1:1 000 000. Третье поколение. Сер. Алдано-Забайкальская. Лист N-50 – Сретенск. Объясн. зап. СПб.: ВСЕГЕИ, 2010. 377 с.
  2. Государственная геологическая карта РФ масштаба 1 : 200 000. Серия Муйская. Лист N-50-II. Объяснительная записка. – М. (СПб.), 2000. – 127 с.
  3. Государственная геологическая карта СССР (новая серия). N-49, (50) (Чита). Масштаб 1: 1 000 000. Объяснительная записка. СПб.: ВСЕГЕИ, 1993. 98 с.
  4. Larin A. M., Neymark L. A., Nemchin A. A., Rytsk E. Yu. Two different types of Neoproterozoic tin-bearing granites in the Baikal Mountain region. 1998. 1998 Intern. Field Confer.: Proterozoic Granite Systems of the Pennokean terrane in Wisconsin. Field Guide and Proceeding Volume. Abstr. Madison, Wisconsin. P. 155–156.
  5. Рыцк Е. Ю., Ковач В. П., Ярмолюк В. В., Коваленко В. И. Структура и эволюция континентальной коры Байкальской складчатой области // Геотектоника. 2007. № 6. С. 23–51.
  6. Государственная геологическая карта Российской Федерации масштаба 1: 1 000 000 (третье поколение). Серия Алдано-Забайкальская. Лист O-50 – Бодайбо. Объяснительная записка. СПб.: ВСЕГЕИ, 2010. 612 с.
  7. Рыцк Е. Ю., Амелин Ю. В., Ризванова Н. Г., Крымский Р. Ш., Митрофанов Г. Л., Митрофанова Н. Н., Переляев В. И., Шалаев В. С. Возраст пород Байкало-Муйского складчатого пояса // Стратиграфия. Геологическая корреляция. 2001. Т. 9. № 4. C. 3–15.
  8. Рыцк Е. Ю., Ковач В. П., Ярмолюк В. В., Богомолов Е. С., Котов А. Б. Изотопная структура и эволюция континентальной коры Восточно-Забайкальского сегмента Центрально-Азиатского складчатого пояса // Геотектоника. 2011. № 5. C. 17–51
  9. Pearce J. A., Harris N. B.W., Tindle A. G. Trace Element Distribution Diagramms for the Tectonic Interpretation of Granitic Rocks // J. Petrol. 1984. V. 25. Part 4. P. 956–983.
  10. Whalen J. B., Currie K. L., Chappell B. W. A-type granites: gechemichal characteristics, discrimination and petrogenesis // Contrib. Mineral. Petrol. 1987. V. 95. P. 407–419.
  11. Барсуков В. Л. Основные черты геохимии олова. М.: Наука, 1974. 150 с.
  12. Patiño Douce A. E. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In: Castro A., Femandez C., Vigneresse J. L. (Eds), Understanding granites: integrating new and classical techniques // Geol. Soc. London, Spec. Publ. 1999. V. 168, P. 55–75.
  13. Krogh T. E. A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination // Geochim. Cosmochim. Acta. 1973. V. 37. P. 485–494.
  14. Ludwig K. R. PbDat for MS-DOS, version 1.21 // U. S. Geol. Surv. Open-File Rept. 88–542. 1991. 35 p.
  15. Ludwig K. R. Isoplot 3.70. A Geochronological Toolkit for Microsoft Excel // Berkeley Geochronology Center Spec. Publ. 2003. V. 4.
  16. Steiger R. H., Jager E. Subcomission of geochronology: convention of the use of decay constants in geo- and cosmochronology // Earth Planet. Sci. Lett. 1976. V. 36. № 2. P. 359–362.
  17. Stacey J. S., Kramers I. D. Approximation of terrestrial lead isotope evolution by a two-stage model // Earth Planet. Sci. Lett. 1975. V. 26. № 2. P. 207–221.
  18. Jacobsen S. B., Wasserburg G. J. Sm-Nd isotopic evolution of chondrites and achondrites, II // Earth Planet. Sci. Lett. 1984. V. 67. P. 137–150.
  19. Goldstein S. J., Jacobsen S. B. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution // Earth Planet. Sci. Lett. 1988. V. 87. P. 249–265.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. a. The position of the Bamboo volcanotectonic structure in the northern marginal part of the Central Asian folded belt. 1 ‒ Early Paleozoic platform cover of the Siberian platform; 2 – Mongol-Okhotsk folded belt Mesozoic and Argun superterrane; 3-6 – Central Asian folded belt: 3 – terranes accreted to the craton in the Late Riphean and Paleozoic (Selengino-Yablonovy and West-Stanovoy superterranes), 4 – Baikal-Patom fold-thrust belt, 5 – Baikal-Vitim folded belt, 6 – Barguzin-Vitim superterrane; 7 – Dzhugdzhuro-Stanovoi Early Precambrian superterrane, activated in the Mesozoic; 8 – Stanovoi suture seam (Paleoproterozoic zone of tectonic melange); 9 – Al- Dan shield. b. Layout of rocks of Zhanok-Bambukoysky volcanoplutonic association and Sn is the birthplace of Mokhovoye within the Neoproterozoic Anamakit-Mui terrane on the northern flank of the Barguzin-Vitim superterrane of the East Trans-Baikal segment of the Central

Download (1MB)
3. Fig. 2. Micrographs of zircon crystals from the trachyriolite of the Zhanok formation (sample No. L‑929), performed on an ABT‑55 scanning electron microscope. I–IV – in the secondary electron mode, V–VIII – in the cathodoluminescence mode.

Download (322KB)
4. Fig. 3. Concordia diagrams for zircons from (a) the trachyriolite of the Zhanok formation (sample No. L‑929) and (b) the biotite leukogranite of the Bamboo complex (sample No. L‑934–1). The numbers of the points in the diagrams correspond to the ordinal numbers in Table 1.

Download (222KB)
5. Fig. 4. Micrographs of zircon crystals from biotite leukogranite of the Bamboo complex (sample No. L‑934–1), performed on an ABT‑55 scanning electron microscope. I–III – in the mode of secondary electrons, IV–VI – in the mode of cathodoluminescence.

Download (387KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies