EVIDENCES OF MINERAL MELTING IN THE ORES OF THE SVETLINSK GOLD DEPOSIT, SOUTH URALS, RUSSIA

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For the large Svetlinsk gold deposit (South Urals) evidences of partial melting of minerals and possible participation of polymetallic melts in the concentration and redistribution of gold and other metals are given. Finding of bismuth and antimony minerals in ores, among which there are gold minerals new to the deposit (pampaloite, montbrayite and aurostibite), specific mineral intergrowths (polymineral Sb–Bi–Pb–Te–Ag–Au drop inclusions), enrichment of early sulphides with Low-Melting-point Chalcophile Elements (LMCE), high formation temperatures for ore assemblages (up to 400°C), as well as the occurring metamorphism of amphibolite facies indicate the possibility of the formation of such melts. Polymetallic melts at the deposit could be formed both by partial melting of early sulphides and directly from hydrothermal fluids. The signs of melting also include simplectites of calaverite and native gold in the marginal parts of the large montbrayite grain.

作者简介

O. Vikent’eva

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: ovikenteva@rambler.ru
Russia, Moscow

N. Bortnikov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences

Email: ovikenteva@rambler.ru
Russia, Moscow

参考

  1. Mavrogenes J.A., Macintosh I.W., Ellis D.J. Partial melting of the Broken Hill galena-sphalerite ore – experimental studies in the system PbS-FeS-ZnS-(Ag2S) // Economic Geology. 2001. V. 96. P. 205–210.
  2. Frost B.R., Mavrogenes J.A., Tomkins A.G. Partial melting of sulfide ore during medium and high-grade metamorphism // Canadian Mineralogist. 2002. V. 40. P. 1–18.
  3. Tomkins A.G., Pattison D.R.M., Zaleski E. The Hemlo gold deposit, Ontario: an example of melting and mobilization of a precious metal-sulfosalt assemblage during amphibolite facies metamorphism and deformation // Economic Geology. 2004. V. 99. P. 1063–1084.
  4. Cook N.J., Ciobanu C.L., Mao J.W. Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton (Hebei Province, China) // Chemical Geology. 2009. V. 264. P.101–121.
  5. Vikentyev I.V., Belogub E.V., Novoselov K.A., Moloshag V.P. Metamorphism of volcanogenic massive sulphide deposits in the Urals. Ore geology // Ore Geology Reviews. 2017. V. 85. P. 30–63.
  6. Tomkins A.G., Pattison D.R.M., Frost B.R. On the initiation of metamorphic sulfide anatexis // J Petrology. 2007. V. 48. P. 511–535.
  7. Tooth B., Ciobanu C.L., Green L., O’Neill B., Brugger J. Bi-melt formation and gold scavenging from hydrothermal fluids: an experimental study // Geochim Cosmochim Acta. 2011. V. 75. P. 5423–5443.
  8. Wagner T. Thermodynamic modeling of Au-Bi-Te melt precipitation from high temperature hydrothermal fluids: preliminary results // Mineral Exploration and Research: Digging Deeper. Proceedings of the 9th Biennial SGA Meeting, Dublin. 2007. P. 769–772.
  9. Douglas N., Mavrogenes J., Hack A., England R. The liquid bismuth collector model: an alternative gold deposition mechanism // AGC Abstracts. 2000. V. 59. P. 135.
  10. Ciobanu C.L., Cook N.J., Damian F., Damian G. Gold scavenged by bismuth melts: An example from Alpine shearremobilizates in the Highis Massif, Romania // Mineralogy and Petrology. 2006. V. 87. P. 351–384.
  11. Cave B.J., Barnes S.-J., Pitcairn I.K., Sack P.J., Kuikka H., Johnson S.C., Duran C.J. Multi-stage precipitation and redistribution of gold, and its collection by lead-bismuth and lead immiscible liquids in a reduced-intrusion related gold system (RIRGS); Dublin Gulch, western Canada // Ore Geology Reviews. 2019. V. 106. P. 28–55.
  12. Jian W., Mao J.W., Lehmann B., Cook N.J., Xie G.Q., Liu P., Duan C., Alles J., Niu Z.J. Au-Ag-Te-rich melt inclusions in hydrothermal gold-quartz veins, Xiaoqinling lode gold district, central China // Economic Geology. 2021. V. 116. P. 1239–1248.
  13. Сазонов В.Н., Попов Б.А., Григорьев Н.А., Мурзин В.В., Мецнер Э.И. Корово-мантийное оруденение в салических блоках эвгеосинклинали. Свердловск: УрО АН СССР, 1989. 112 с.
  14. Федосеев В.В., Рябов Ю.И., Гаджиева Л.А. Переоценка золоторудных месторождений Челябинской области – основа развития минерально-сырьевой базы АО “ЮГК” // Известия Тульского государственного университета. Науки о Земле. 2020. Вып. 4. С. 547–560.
  15. Vikent’eva O., Prokofiev V., Borovikov A., Kryazhev S., Groznova E., Pritchin M., Vikentyev I., Bortnikov N. Contrasting fluids in the Svetlinsk gold-telluride hydrothermal system, South Urals // Minerals. 2020. V. 10 (1). 37.
  16. Vikent’eva O.V., Shilovskikh V.V., Shcherbakov V.D., Moroz T.N., Vikentyev I.V., Bortnikov N.S. Montbrayite from the Svetlinsk gold-telluride deposit (South Urals, Russia): composition variability and decomposition // Minerals. 2023. V. 13(9). 1225.
  17. Cabri L.J. Phase relations in the Au–Ag–Te systems and their mineralogical significance // Economic Geology. 1965. V. 60. P. 1569–1606.
  18. Gather B., Blachnik R. Das System Gold-Wismut-Tellur // Z Metallkunde. 1974. V. 65. P. 653–656.
  19. Legendre B., Souleau C. Etude du systeme ternaire Au–Pb–Te // Soc Chim France Bull. 1972. V. 1. P. 473–479.
  20. Gather B., Blachnik R. Das ternäre System Gold-Antimon-Tellur // International Journal of Materials Research. 1976. V. 67. P. 395–399.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (1MB)
3.

下载 (950KB)
4.

下载 (1MB)

版权所有 © О.В. Викентьева, Н.С. Бортников, 2023

##common.cookie##