GEOCHEMICAL VIEW ON “INOFFENSIVE” DEPLETED URANIUM

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The interaction of alpha radiation from UO2 micro- and nanoparticles (uraninite) with the substance was visualized using alpha-autoradiography data on A-2 thick-layer nuclear photographic emulsions. The spherical area of action of alpha particles around UO2 micrograins, up to 100 microns in size, is a deeply transformed substance with a high density of radiation defects. The translation of these results on a living organism leads to the conclusion about the specific type of impact of micro- and nanoparticles of depleted uranium, in which prolonged internal irradiation in small doses of the whole organism is combined with catastrophically high doses of alpha radiation in local zones, near micro- and nanoparticles UO2.

About the authors

C. M. Zhmodik

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences,

Author for correspondence.
Email: zhmodik@igm.nsc.ru
Russian, Novosibirsk

V. A. Ponomarchuk

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences,

Email: zhmodik@igm.nsc.ru
Russian, Novosibirsk

References

  1. Esposito M., Polić P., Bartolomei P., Benzi V., Martellini M., Cvetković O., Damjanov V., Simić M., Žunić Z., Živančević B., Simić S., Jovanovic V. Survey of natural and anthropogenic radioactivity in environmental samples from Yugoslavia // J. Environ. Radioactivity. 2002. V. 61. P. 271–282.
  2. Bleise A., Danesi P.R., Burkart W. Properties, use and health effects of depleted uranium (DU): a general overview // J. Environ. Radioactivity. 2003. V. 64. P. 93–112.
  3. Dekant W., De Voogt P., Peterlin B., Vighi M. Opinion on the Environmental and Health Risks Posed by Depleted Uranium // SCHER (Scientific Committee on Health and Environmental Risks), Opinion on the environmental and health risks posed by depleted uranium, 18 May 2010. 41 p. http://ec.europa.eu/health/ph_risk/risk_en.htm
  4. Parrish R.R., Haley R.W. Resolving whether inhalation of depleted uranium contributed to Gulf War Illness using high‑sensitivity mass spectrometry // Sci. Reports. 2021. V. 11. № 3218.https://doi.org/10.1038/s41598-021-82535-3
  5. Hahn F.F., Roszell L.E., Daxon E.G., Guilmette R.A., Parkhurst M.A. Radiological risk assessment of capstone depleted uranium aerosols // Health Physics. 2009. V. 96 (3). P. 352–362. https://doi.org/10.1097/01.hp.0000318891.68749.66
  6. Duraković A. Undiagnosed Illnesses and Radioactive Warfare // Croatian Medical J. 2003. V. 44. P. 520–532.
  7. Miller A.C., Rivas R., Tesoro L., Kovalenko G., Kovaric N., Pavlovic P., Brenner D. Radiation exposure from depleted uranium: The radiation bystander effect // Toxicology and Applied Pharmacology. 2017. V. 331. P. 135–141. https://doi.org/10.1016/j.taap.2017.06.004
  8. Ran Y., Wang S., Zhao Y., Li J., Ran X., Hao Y. A review of biological effects and treatments of inhaled depleted uranium aerosol // J. Environ. Radioactivity. 2020. V. 222. № 106357. https://doi.org/10.1016/j.jenvrad.2020.106357
  9. Жмодик С.М. Геохимия радиоактивных элементов в процессе выветривания карбонатитов, кислых и щелочных пород. Новосибирск: Наука, 1984. 167 с.
  10. Булдаков Л.А. Радиоактивные вещества и человек. М.: Энергоатомиздат, 1990. 160 с.
  11. Busby C. Uranium weapons: why all the fuss? // In.: Uranium weapons. Eds: K. Vignard; J. Linekar; V. Compagnion. Geneva: UNIDIR. 2008. P. 25–33.
  12. Пауэлл С., Фаулер П., Перкинс Д. Исследование элементарных частиц фотографическим методом. М.: ИЛ, 1962. 625 с.
  13. Closing the Circle on the Splitting of the Atom. The Environmental Legacy of Nuclear Weapons Production in the United States and What the Department of Energy is Doing About It. The U.S. Department of Energy: Office of Environmental Management. 1996. 106 p. https://www.energy.gov/em/articles/closing-circle-splitting-atom
  14. Булдаков Л.А., Калистратова В.С. Радиоактивное излучение и здоровье. М.: Информ-Атом, 2003. 165 с.
  15. Lind O.C., Tschiersch J., Salbu B. Nanometer-micrometer sized depleted uranium (DU) particles in the environment // J. Environ. Radioactivity. 2020. V. 211. № 106077. https://doi.org/10.1016/j.jenvrad.2019.106077
  16. Salbu B., Janssens K., Lind O.C., Proost K., Danesi P.R. Oxidation states of uranium in DU particles from Kosovo // J. Environ. Radioactivity. 2003. V. 64. P. 167–173.
  17. Danesi P.R., Markowicz A., Chinea-Cano E., Burkart W., Salbu B., Donohue D., Ruedenauer F., Hedberg M., Vogt S., Zahradnik P., Ciurapinski A. Depleted uranium particles in selected Kosovo Samples // J. Environ. Radioactivity. 2003. V. 64. P. 143–154.
  18. Захаров А.В., Зеленый Л.М., Попель С.И. Лунная пыль: свойства, потенциальная опасность // Астрономический вестник. 2020. Т. 54. № 6. С. 483–507. https://doi.org/10.31857/S0320930X20060079
  19. Абрамовская А.К., Якубеня О.Н., Лавор З.В., Тамашакина Г.Н., Лейнова С.Л., Соколик Г.А., Суркова Л.К. “Горячие частицы” в бронхоальвеолярном смыве у больных, страдающих некоторыми заболеваниями органов дыхания // Медицинские новости. 1995. № 7. С. 56–60.
  20. Иванов В.К., Кащеев В.В., Чекин С.Ю., Максю-тов М.А., Туманов К.А., Кочергина Е.В., Щукина Н.В., Цыб А.Ф. Заболеваемость и смертность участников ликвидации последствий аварии на Чернобыльской АЭС: оценка радиационных рисков, период наблюдения 1992–2008 гг. // Радиационная гигиена. 2011. Т. 4. № 2. С. 40–49.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (3MB)

Copyright (c) 2023 С.М. Жмодик, В.А. Пономарчук

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies