A COMPOSITE MODEL OF MICROWAVE SCATTERING FROM WATER SURFACE IN EXTREME WIND SPEED CONDITION

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Experiments were carried out in the wind-wave flume of Large Thermo-Stratified Wind-Wave Tank of IAP RAS aimed at studying the mechanisms of cross-polarized microwave radiation scattering from water surface under conditions of extremely high wind speeds. It is shown that the normalized radar cross-section (NRCS) can be represented as the result of an incoherent addition of contributions from breaking wave crests and from non-breaking wind waves. The effect of smoothing the water surface after passing the breaking crest made it possible to measure the NRCS of the breaking area on cross-polarization, while no dependence of the NRCS on wind speed and incidence angle was revealed. NRCS on non-breaking wind waves was calculated within the framework of the small slope approximation (SSA) using experimentally measured wind wave spectra. It is shown that the NRCS on cross-polarization increases monotonically with increasing wind speed, including hurricane conditions. In this case, the contribution of non-breaking wind waves to the NRCS saturates at wind speeds above 25 m/s. The monotonous increasing NRCS at higher wind speeds is associated with a breaking area increasing. A composite model of microwave radiation scattering from wave-covered water surface has been constructed, which has been verified on the basis of comparison with measurement data. The possibility of constructing a geophysical model function for ocean conditions based on the proposed composite model is shown, which can be used for remote sensing of sea storms and hurricanes.

About the authors

N. S. Rusakov

Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Author for correspondence.
Email: nikitarusakov@ipfran.ru
Russian, Nizhny Novgorod

G. A. Baydakov

Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: nikitarusakov@ipfran.ru
Russian, Nizhny Novgorod

Yu. I. Troitskaya

Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: nikitarusakov@ipfran.ru
Russian, Nizhny Novgorod

References

  1. Zhang B., Perrie W. Cross-polarized synthetic aperture radar: a new potential technique for hurricanes // Bulletin of the American Meteorological Society. V. 93. № 4. P. 531–541.
  2. Hwang P.A., Zhang B., Perrie W. Depolarized radar return for breaking wave measurement and hurricane wind retrieval // Geophys. Res. Lett. 2010. V. 37. L01604. 4 pp. https://doi.org/10.1029/2009GL041780
  3. Mouche A., Chapron B., Knaff J., Zhao Y., Zhang B., Combot C. Copolarized and cross-polarized SAR measurements for high-resolution description of major hurricane wind structures: Application to Irma category 5 hurricane // Journal of Geophysical Research: Oceans. V. 124. P. 3905–3922.https://doi.org/10.1029/2019JC015056
  4. Troitskaya Yu., Abramov V., Baidakov G., Ermakova O., Zuikova E., Sergeev D., Ermoshkin A., Kazakov V., Kandaurov A., Rusakov N., Poplavsky E., Vdovin M. Cross-Polarization GMF For High Wind Speed and Surface Stress Retrieval // Journal of Geophysical Research: Oceans. 2018. V. 123. № 8. August 2018, https://doi.org/10.1029/2018JC014090
  5. http://www.ckp-rf.ru/usu/77738/
  6. Ermakov S.A., Dobrokhotov V.A., Sergievskaya I.A., Kapustin I.A. Suppression of Wind Ripples and Microwave Backscattering Due to Turbulence Generated by Breaking Surface Waves // Remote Sensing. 2020. V. 12. № 21. P. 3618.
  7. Воронович А.Г. Приближение малых наклонов в теории рассеяния волн на неровных поверхностях // ЖЭТФ. 1985. Т. 89. № 1 (7). С. 116–125.
  8. Voronovich A.G., Zavorotny V.U. Theoretical Model for Scattering of Radar Signals in Ku- and C-bands from a Rough Sea Surface with Breaking Waves. // Waves in Random Media – WAVE RANDOM MEDIA. 2001. 11. https://doi.org/10.1080/13616670109409784
  9. Voronovich Alexander, Zavorotny Valery. Full-Polarization Modeling of Monostatic and Bistatic Radar Scattering from a Rough Sea Surface // Antennas and Propagation. 2015. IEEE Transactions on. 62. 1362–1371. https://doi.org/10.1109/TAP.2013.2295235
  10. Shira Lynn Broschat, Eric I. Thorsos. An investigation of the small slope approximation for scattering from rough surfaces. Part II. Numerical studies // J. Acoust. Soc. Am. 1997. 101 (5).
  11. Guérin C.-A., Johnson J.T. A Simplified Formulation for Rough Surface Cross-Polarized Backscattering Under the Second-Order Small-Slope Approximation // IEEE Transactions on Geoscience and Remote Sensing. V. 53. № 11. P. 6308–6314. Nov. 2015. https://doi.org/10.1109/TGRS.2015.2440443
  12. Troitskaya Yu.I., Sergeev D.A., Kandaurov A.A., Baidakov G.A., Vdovin M.A., Kazakov V.I. Laboratory and Theoretical Modeling of Air-sea Momentum Transfer under Severe Wind Conditions // J. Geophys. Res. 2012. V. 117. C00J21. 13 p. https://doi.org/10.1029/2011JC007778
  13. Байдаков Г.А., Кандауров А.А., Кузнецова А.М., Сергеев Д.А., Троицкая Ю.И. Натурные исследования особенностей ветрового волнения при малых значениях разгонах // Изв. РАН Серия физическая. 2018. Т. 82. № 11. С. 1569–1573.
  14. Donnelly W.J., Carswell J.R., McIntosh R.E., Chang P.S., Wilkerson J., Marks F., and Black P.G. Revised Ocean Backscatter Models at C and Ku Band under High-wind Conditions // J. Geophys. Res. 1999. V. 104 (C5). P. 11485–11497.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (435KB)
3.

Download (104KB)
4.

Download (64KB)
5.

Download (130KB)

Copyright (c) 2023 Н.С. Русаков, Г.А. Байдаков, Ю.И. Троицкая

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies