REGULARITIES OF HYDROCHEMICAL DYNAMICS IN A TWO-DIMENSIONAL TURBULENT FLOW OF NATURAL WATER
- 作者: Danilov-Danilyan V.I.1, Rosenthal O.M.1
-
隶属关系:
- Institute of Water Problems, Russian Academy of Sciences
- 期: 卷 512, 编号 1 (2023)
- 页面: 143-149
- 栏目: LAND WATERS PROBLEMS
- ##submission.dateSubmitted##: 14.10.2023
- ##submission.datePublished##: 01.09.2023
- URL: https://journals.rcsi.science/2686-7397/article/view/135898
- DOI: https://doi.org/10.31857/S268673972360090X
- EDN: https://elibrary.ru/IMTQYI
- ID: 135898
如何引用文章
详细
The variability of the composition and properties of natural waters, which creates numerous difficulties in water use, cannot always be explained by the influence of external influencing factors, such as weathering or leaching of rocks, a change in the phases of the water regime, etc. This is especially true for subdiurnal and subhourly quality variability, which can be caused by complex, previously unknown dynamic hydrochemical processes. Such a conclusion follows from the results of the study of turbidity and pH of natural water given in the work, obtained with an increased frequency of measurements. These results indicate the existence of a quasi-cyclic change in the controlled parameters with different periods, from every minute to daily. The study of observational data allows us to make an assumption that in this case the hydrochemical dynamics is due to direct and reverse energy cascades in a two-dimensional turbulent flow of natural water, in which the impurity subsystem is prone to stratification.
作者简介
V. Danilov-Danilyan
Institute of Water Problems, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: vidd38@yandex.ru
Russian, Moscow
O. Rosenthal
Institute of Water Problems, Russian Academy of Sciences
Email: vidd38@yandex.ru
Russian, Moscow
参考
- Wilby R., Gilbert J. Hydrological and hydrochemical dynamics / G.E. Petts, C. Amoros (eds). The Fluvial Hydrosystems. Chapman & Hall Ltd, 1996. 322 p.
- Jordan P., Arnscheidt J., McGrogan H., McCormick S. High-resolution phosphorus transfers at the catchment scale: the hidden importance of non-storm transfers // Hydrology and Earth System Sciences. 2005. 9(6):6. P. 685–691.
- Palmer-Felgate E.J., Jarvie H.P., Williams R.J., Mortimer R.J.G., Loewenthal M., Neal C. Phosphorus dynamics and productivity in a sewage-impacted lowland chalk stream // Journal of Hydrology. 2008. 351. P. 87–97.
- Rozemeijer J.C., van der Velde Y., van Geer F.C., de Rooij G.H., Torfs P.J.J.F., Broers H.P. Improving load estimates for NO(3) and P in surface waters by characterizing the concentration response to rainfall events // Environmental Science & Technology. 2010. 44(16). P. 6305–6312. https://doi.org/10.1021/es101252e
- Cassidy R., Jordan P. Limitations of instantaneous water quality sampling in surface-water catchments: comparison with near-continuous phosphorus time-series data // Journal of Hydrology. 2011. 405. P. 182–193.
- Bowes M.J., Palmer-Felgate E.J., Jarvie H.P., Loewenthal M., Wickham H.D., Harman S.A., Carr E. High-frequency phosphorus monitoring of the River Kennet, UK: are ecological problems due to intermittent sewage treatment works failures? // Journal of Environmental Monitoring. 2012. 14. P. 3137–3145.
- Cohen M.J., Heffernan J.B., Albertin A., Martin J.B. Inference of riverine nitrogen processing from longitudinal and diel variation in dual nitrate isotopes // Journal of Geophysical Research, Biogeosciences. 2012. 117: G01021.https://doi.org/10.1029/2011Jg001715.0.548
- Bieroza M., Heathwaite A.L., Mullinger N., Keenan P. Understanding nutrient biogeochemistry in agricultural catchments: the challenge of appropriate monitoring frequencies // Environmental Science: Processes & Impacts. 2014. 16 (7). P. 1676–1691.
- Kirchner J.W., Feng X.H., Neal C., Robson A.J. The fine structure of water-quality dynamics: the (high-frequency) wave of the future // Hydrological Processes. 2004, May. 18. P. 1353–1359.
- Heffernan J.B., Cohen M.J. Direct and indirect coupling of primary production and diel nitrate dynamics in a subtropical spring-fed river // Limnology and Oceanography. 2010. 55 (2). P. 677–688.
- Macintosh K.A., Jordan P., Cassidy R., Arnscheidt J., Ward C. Low flow water quality in rivers; septic tank systems and high-resolution phosphorus signals // Science of the Total Environment. 2011. 412. P. 58–65.
- Halliday S.J., Skeffington R.A., Wade A.J., Neal C., Reynolds B., Norris D., Kirchner J.W. Upland streamwater nitrate dynamics across decadal to sub-daily timescales: a case study of Plynlimon, Wales // Biogeosciences. 2013. 10. P. 8013–8038.
- Данилов-Данильян В.И., Розенталь О.М. Гипотеза о причинах сильной изменчивости концентрации примесей в природных водах // Доклады РАН. Науки о Земле. 2023. Т. 509. № 1. С. 114–119. https://doi.org/10.31857/S2686739722602502
- Murgatroyd A.L. River channel patterns: A geographic analysis // Graduate Student Theses, Dissertations, & Professional Papers. 1973. 75 p.
- Klingenberg D., Oberlack M., Pluemacher D. Symmetries and turbulence modeling // Physics of Fluids. 2020. V. 32 (2). P. 1–18.
- Добровольский А.Д., Добролюбов С.А., Михайлов В.Н. Гидрология. М.: Высшая Школа, 2007. 463 с.
- Орлов А.В., Бражников М.Ю., Левченко А.А. Формирование крупномасштабного когерентного вихря в двумерной турбулентности // Письма в ЖЭТФ. 2018. Т. 107. Вып. 3. С. 166–171.
- Арнольд В.И. Математические методы классической механики. 5 изд. М.: Эдиториал УРСС, 2003. 480 с.
- Николис Г., Пригожин И. Самоорганизация в неравновесных системах: от диссипативных структур к упорядоченности через флуктуации. М.: Мир, 1979. 512 с.
- Мандельброт Б.Б. Фракталы и хаос. Множество Мандельброта и другие чудеса. М.; Ижевск: НИЦ “Регулярная и хаотическая динамика”, 2009. 392 с.
补充文件
