ALKALINE WATERS OF THE ULTRABASIC MASSIF OF Mt SOLDATSKAYA, KAMCHATKA: CHEMICAL AND ISOTOPIC COMPOSITION, MINERALOGY AND 14C AGE OF TRAVERTINES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For the first time, a detailed description of springs with alkaline waters (pH > 10) found within the ultrabasic massif of the Mt. Soldatskaya on the Kamchatsky Mys Peninsula in Kamchatka is presented. The chemical composition of the springs and the dependence of the ratios and concentrations of some components on pH correspond to the formation of these waters due to modern serpentinization of ultramafic rocks. The most alkaline springs (pH 12.3) contain dissolved hydrogen at a concentration of about 0.6 mmol/l. The behavior of the isotopic composition of carbonate travertines precipitated from these springs (δ13C and δ18O) differs from the known trend for “meteogenic” travertines, associated with serpentinization of ultrabasic rocks in Oman and California. The age of travertines, determined by the radiocarbon method is close to the modern.

About the authors

Yu. A. Taran

Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences

Email: savelyev@kscnet.ru
Russian, Petropavlovsk-Kamchatsky

D. P. Savelyev

Institute of Volcanology and Seismology, Far Eastern Branch, Russian Academy of Sciences

Author for correspondence.
Email: savelyev@kscnet.ru
Russian, Petropavlovsk-Kamchatsky

G. A. Palyanova

Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences

Email: savelyev@kscnet.ru
Russian, Novosibirsk

B. G. Pokrovsky

Geological Institute, Russian Academy of Sciences

Email: savelyev@kscnet.ru
Russian, Moscow

References

  1. Barnes I., Lamarche V., JR., Himmelberg G. Geochemical evidence of present-day serpentinization // Science. 1967. V. 156. P. 830–832.
  2. Chavagnac V., Monnin C., Ceuleneer G., Boulart C., Hoareau G. Characterization of hyperalkaline fluids produced by low-temperature serpentinization of mantle peridotites in the Oman and Ligurian ophiolites // Geochemistry, Geophysics and Geosystems. 2013. V. 14 (7). P. 2496–2522.
  3. Dubinina E., Chernyshew I., Bortnikov N., Lein A., Sagalevich A., Gol’zman Y., Bairova E., Mokhov A. Isotopic–geochemical characteristics of the Lost City hydrothermal field // Geochemistry Int. 2007. 45. P. 1131–1143.
  4. Paukert A.N., Matter J.M., Kelemen P.B., Shock E.L., Havig J.R. Reaction path modeling of enhanced in situ CO2 mineralization for carbon sequestration in the peridotite of the Samail Ophiolite, Sultanate of Oman // Chemical Geology. 2012. V. 330. P. 86–100.
  5. Palandri J.L., Reed M.H. Geochemical models of metasomatism in ultramafic systems: Serpentinization, rodingitization, and sea floor carbonate chimney precipitation // Geochimica et Cosmochimica Acta. 2004. V. 68 (5). P. 1115–1133.
  6. Pentecost A. Travertine. Berlin, Springer-Verlag. 2005. 445 p.
  7. Christensen J.N., Watkins J.M., Devriendt L.S., DePao-lo D.J., Conrad M.E., Voltolini M., Yang W., Dong W. Isotopic fractionation accompanying CO2 hydroxylation and carbonate precipitation from high pH waters at The Cedars, California, USA // Geochimica et Cosmochimica Acta. 2021. V. 301. P. 91–115.
  8. Schwarzenbach E.M., Lang S.O., Fruh-Green G.L., Lilley M., Bernasconi S.M., Mehay S. Sources and cycling of carbon in continental, serpentinite-hosted alkaline springs in the Voltri Massif, Italy // Lithos. 2012. V. 177. P. 226–244.
  9. Ternieten L., Früh-Green G.L., Bernasconi S.M. Carbon geochemistry of the active serpentinization site at the Wadi Tayin Massif: Insights from the ICDP Oman Drilling Project: Phase II // Journal of Geophysical Research: Solid Earth. 2021. V. 126. e2021JB022712. https://doi.org/10.1029/2021JB0227
  10. Szponar N., Brazelton W.J., Schrenk M.O., Bower D.M., Steele A., Morrill P.L. Geochemistry of a continental site of serpentinization, the Tablelands Ophiolite, Gros Morne National Park: A Mars analogue // Icarus. 2012. V. 224(2). P. 286–296. https://doi.org/10.1016/j.icarus.2012.07.004
  11. Крайнов С.Р., Рыженко Б.Н., Швец В.М. Геохимия подземных вод. Теоретические, прикладные и экологические аспекты. Москва: Наука, 2004. 677 с.
  12. Савельев Д.П., Новаков Р.М., Черкашин Р.И. Травертины и спелеотемы п-ова Камчатский Мыс (Камчатка) // Вестник КРАУНЦ. Науки о Земле. 2014. № 2 (Выпуск 24). С. 7–11.
  13. Новаков Р.М., Савельев Д.П., Белова Т.П., Пала-марь С.В. Травертины Камчатского Мыса // Материалы конференции, посвященной Дню вулканолога “Вулканизм и связанные с ним процессы”. Петропавловск-Камчатский, ИВиС ДВО РАН. 2014. С. 97–103.
  14. Хотин М.Ю., Шапиро М.Н. Офиолиты Камчатского Мыса (Восточная Камчатка): строение, состав, геодинамические условия формирования // Геотектоника. 2006. № 4. С. 61–89.
  15. Бояринова М.Е., Вешняков Н.А., Коркин А.Г., Савельев Д.П. Государственная геологическая карта Российской Федерации масштаба 1: 200 000. Изд. 2-е. Серия Восточно-Камчатская. Лист 0-58-XXVI, XXXI, XXXII (Усть-Камчатск). Объяснительная записка. СПб.: Картографическая фабрика ВСЕГЕИ, 2007. 226 с. + 2 вкладки.
  16. Reimer P.J., Brown T.A., Reimer Ron W. Discussion: Reporting and calibration of post-bomb 14C data // Radiocarbon. 2004. V. 46 (1). P. 1111–1150.
  17. Reed M.H., Spycher N.F. Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution // Geochimica et Cosmochimica Acta. 1984. V. 48. P. 1479–1492.
  18. Чешко А.Л., Есиков А.Д. Дейтерий и кислород-18 в атмосферных осадках, поверхностных и грунтовых водах Камчатки и Курильских островов. Водные ресурсы. 1990. № 6. С. 34–43.
  19. Jones B. Review of calcium carbonate polymorph precipitation in spring systems // Sedimentary Geology. 2017. V. 353. P. 64–75.
  20. Horita J. Oxygen and carbon isotope fractionation in the system dolomite–water–CO2 to elevated temperatures // Geochimica et Cosmochimica Acta. 2014. V. 129. P. 111–124.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (1MB)
4.

Download (52KB)
5.

Download (78KB)

Copyright (c) 2023 Ю.А. Таран, Д.П. Савельев, Г.А. Пальянова, Б.Г. Покровский

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies