SPATIAL DISTRIBUTION OF AMPLITUDES OF INTERNAL TIDAL WAVES ON THE NORTH-EASTERN SHELF OF SAKHALIN

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The transformation of a multicomponent barotropic tide in the Sea of Okhotsk is considered in the framework of fully nonlinear non-hydrostatic calculations. The data of the tidal model and parameterized bottom topography and vertical profiles of sea water density based on data from open international atlases are used to initialize the model. Estimates of the wave amplitudes of the diurnal and semidiurnal baroclinic tides in terms of the displacement of isopycnal surfaces at different horizons are obtained and presented in the form of geographical maps. It is shown that the distribution of amplitudes significantly depends on depth, has a complex spatial structure with a noticeable predominance of the amplitudes of baroclinic waves of the diurnal period and the main extrema located on the shelf opposite Cape Elizabeth, Okhinsky Isthmus and Cape Patience. The implemented approach to mapping the amplitudes of internal tides can be applied to other shelf areas of the seas of the Russian Federation and used for predictions of these phenomena, including engineering assessments for the design and operation of marine infrastructure.

About the authors

E. A. Rouvinskaya

R.E. Alekseev Nizhny Novgorod State Technical University

Email: aakurkin@nntu.ru
Russian Federation, Nizhny Novgorod

O. E. Kurkina

R.E. Alekseev Nizhny Novgorod State Technical University

Email: aakurkin@nntu.ru
Russian Federation, Nizhny Novgorod

A. A. Kurkin

R.E. Alekseev Nizhny Novgorod State Technical University

Author for correspondence.
Email: aakurkin@nntu.ru
Russian Federation, Nizhny Novgorod

References

  1. Вольцингер Н.Е., Андросов А.А., Клеванный К.А., Сафрай А.С. Океанологические модели негидростатической динамики: обзор // Фундаментальная и прикладная гидрофизика. 2018. Т. 11. № 1. С. 3–20.
  2. Vitousek S., Fringer O.B. Physical vs. numerical dispersion in nonhydrostatic ocean modeling // Ocean Model. 2011. V. 40. P. 72–86.
  3. Vlasenko V., Stashchuk N., Inall M.E., Hopkins J.E. Tidal energy conversion in a global hot spot: On the 3-D dynamics of baroclinic tides at the Celtic Sea shelf break // Journal of Geophysical Research: Oceans. 2014. V. 119 (6). P. 3249–3265.
  4. Vlasenko V., Stashchuk N. Internal tides near the Celtic Sea shelf break: A new look at a well-known problem // Deep Sea Research Part I: Oceanographic Research Papers. 2015. V. 103. P. 24–36.
  5. Vlasenko V., Stashchuk N., Inall M.E., Porter M., Aleynik D. Focusing of baroclinic tidal energy in a canyon // Journal of Geophysical Research: Oceans. 2016. V. 121 (4). P. 2824–2840.
  6. Zeng Z., Brandt P., Lamb K.G., Greatbatch R.J., Dengler M., Claus M., Chen X. Three-Dimensional Numerical Simulations of Internal Tides in the Angolan Upwelling Region // Journal of Geophysical Research: Oceans. 2021. V. 126 (2). https://doi.org/10.1029/2020JC016460
  7. Семин С.В., Куркина О.Е., Куркин А.А., Гиниятуллин А.Р. Численное моделирование динамики стратифицированного озера // Труды НГТУ им. Р.Е. Алексеева. 2012. № 2 (95). С. 48–65.
  8. Зайцев А.И., Семин С.В., Костенко И.С. Натурные измерения и численное моделирование гидрологических параметров в озере Тунайча // Труды НГТУ им. РЕ Алексеева. 2014. № 1 (103). С. 46–52.
  9. Морозов Е.Г., Нейман В.Г., Писарев С.В., Ерофе- ева С.Ю. Внутренние приливные волны в Баренцевом море // Доклады Академии наук. 2003. Т. 392. № 5. С. 686–688.
  10. Rijnsburger S., Flores R.P., Pietrzak J.D., Lamb K.G., Jones N.L., Horner-Devine A.R., Souza A.J. Observations of multiple internal wave packets in a tidal river plume // Journal of Geophysical Research: Oceans. 2021. V. 126 (8). https://doi.org/e2020JC016575
  11. Lamb K.G., Farmer D. Instabilities in an internal solitary-like wave on the Oregon shelf // Journal of Physical Oceanography. 2011. V. 41 (1). P. 67–87.
  12. Bai X., Lamb K.G., Hu J., Liu Z. On Tidal Modulation of the Evolution of Internal Solitary-Like Waves Passing through a Critical Point // Journal of Physical Oceanography. 2021. V. 51 (8). P. 2533–2552.
  13. Rivera-Rosario G., Diamessis P.J., Lien R.C., Lamb K.G., Thomsen G.N. Formation of recirculating cores in convectively breaking internal solitary waves of depression shoaling over gentle slopes in the South China Sea // Journal of Physical Oceanography. 2020. V. 50 (5). P. 1137–1157.
  14. Katsumata K. Two- and three-dimensional numerical models of internal tide generation at a continental slope // Ocean Model. 2006. V. 12. № 1–2. P. 217–234.
  15. Lamb K. Numerical experiments of internal wave generation by strong tidal flow across a finite amplitude bank edge // J. Geoph. Res. 1994. V. 99. P. 843–864.
  16. Egbert G.D., Erofeeva S.Y. Efficient inverse modeling of barotropic ocean tides // J. Atmos. Oceanic Technol. 2002. V. 19 (2). P. 183–204.
  17. Путов В.Ф., Шевченко Г.В. Особенности приливного режима на северо-восточном шельфе о. Сахалин // Тематический выпуск Дальневосточного регионального научно-исследовательского гидрометеорологического института № 1. Владивосток: Дальнаука. 1998. С. 61–82.
  18. Рувинская Е.А., Куркина О.Е., Куркин А.А. Перенос частиц и динамические эффекты при трансформации бароклинной приливной волны в условиях шельфа дальневосточных морей // Экологические системы и приборы. 2021. № 11. С. 109–118.
  19. Kuznetsov P.D., Rouvinskaya E.A., Kurkina O.E., Kurkin A.A. Transformation of baroclinic tidal waves in the conditions of the shelf of the Far Eastern seas // IOP Conf. Ser.: Earth Environ. Sci. 2021. V. 946. https://doi.org/10.1088/1755-1315/946/1/012024
  20. Vlasenko V., Stashchuk N., Hutter K. Baroclinic Tides: Theoretical Modeling and Observational Evidence. – Cambridge University Press: Cambridge.2005.
  21. Мороз В.В., Богданов К.Т., Ростов В.И., Ростов И.Д. Электронный атлас приливов окраинных морей северной Пацифики // Вестник ДВО РАН. 2010. № 1. С. 102–106.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (831KB)
3.

Download (952KB)

Copyright (c) 2023 Е.А. Рувинская, О.Е. Куркина, А.А. Куркин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies