DEVELOPMENT OF A METHODOLOGY FOR MONITORING THE STATE OF GAS HYDRATE DEPOSITS OF THE EAST SIBERIAN SHELF

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

One of the possible mechanisms causing significant emissions of methane into the atmosphere within the Arctic shelf may be the decomposition of gas hydrates. Their accumulations within the Arctic shelf formed almost simultaneously with the formation of permafrost, which contributed to the emergence of a zone of stable existence of gas hydrates. The subsequent flooding of the Arctic shelf led to the degradation of the permafrost and the violation of the conditions for the existence of hydrates. To assess the state of the stability zone, methods of mathematical numerical modeling are used. Standard seismic methods are widely used to localize gas hydrates, but monitoring their physical state requires the development of fundamentally new approaches based on solving multiparameter inverse seismic problems. In particular, the degree of attenuation of seismic energy is one of the objective parameters for assessing the consolidation of gas hydrates: the closer they are to the beginning of decomposition, the higher the attenuation, and hence the lower the quality factor. Thus, the methods of seismic monitoring of the state of gas hydrates in order to predict the possibility of developing dangerous scenarios should be based on solving a multi-parameter inverse seismic problem. This publication is devoted to the presentation of this approach.

About the authors

V. A. Cheverda

Sobolev Institute of mathematics of the Russian Academy of Sciences

Author for correspondence.
Email: vova_chev@mail.ru
Russian, Novosibirsk

D. S. Bratchikov

Sobolev Institute of mathematics of the Russian Academy of Sciences

Email: vova_chev@mail.ru
Russian, Novosibirsk

K. G. Gadylshin

Trofimuk Institute of Oil-and-Gas Geology and Geophysics, Siberian Branch of Russian Academy of Sciences

Email: vova_chev@mail.ru
Russian, Novosibirsk

E. N. Golubeva

Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch of Russian Academy of Sciences

Email: vova_chev@mail.ru
Russian, Novosibirsk

V. V. Malakhova

Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch of Russian Academy of Sciences

Email: vova_chev@mail.ru
Russian, Novosibirsk

G. V. Reshetova

Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch of Russian Academy of Sciences

Email: vova_chev@mail.ru
Russian, Novosibirsk

References

  1. Shakhova N., Semiletov I., Chuvilin E. Understanding the permafrost–hydrate system and associated methane releases in the East Siberian Arctic Shelf // Geosciences. 2019. 9. 251.
  2. Collett T.S., Lee M.W., Agena W.F., Miller J.J., Lewis K.A., Zyrianova M.V., et al. Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope // Marine and Petroleum Geology. 2011. 28 (2). P. 279–294.
  3. Rekant P., Bauch H.A., Schwenk T., Portnov A., Gusev E., Spiess V., et al. Evolution of subsea permafrost landscapes in Arctic Siberia since the Late Pleistocene: A synoptic insight from acoustic data of the Laptev Sea // Arktos. 2015. 1 (1). 11.
  4. Malakhova V. The response of the Arctic Ocean gas hydrate associated with subsea permafrost to natural and anthropogenic climate changes, IOP Conf. Ser. // Earth and Environmental Sci. 2020. 606. 012035.
  5. Dmitrenko I., Kirillov S., Tremblay L., Kassens H., Anisimov O., Lavrov S., Razumov S., Grigoriev M. Recent changes in shelf hydrography in the Siberian Arctic: Potential for subsea permafrost instability // J. Geophys. Res. 2011. V. 116: C10027.
  6. Golubeva E., Kraineva M., Platov G., Iakshina D., Tarkhanova M. Marine Heatwaves in Siberian Arctic Seas and Adjacent Region // Remote Sens. 2021. 13. 4436.
  7. Gavrilov A., Malakhova V., Pizhankova E., Popova A. Permafrost and gas hydrate stability zone of the glacial part of the East Siberian shelf // Geosciences. 2020. 10. P. 484.
  8. Юрганов Л.Н., Лейфер А. Оценки эмиссии метана от некоторых арктических и приарктических районов по данным орбитального интерферометра IASI // Современные проблемы дистанционного зондирования Земли из космоса. 2016. Т. 13. № 3. С. 173–183.
  9. Malakhova V., Eliseev A. Salt diffusion effect on the submarine permafrost state and distribution as well as on the stability zone of methane hydrates on the Laptev Sea shelf // Ice and Snow. 2020. 60. P. 533–546.
  10. Davies J.H. Global map of Solid Earth surface heat flow // Geochem. Geophyst. Geosyst. 2013. V. 14 (10). P. 4608–4622.
  11. Chuvilin E., Bukhanov B., Davletshina D., Grebenkin S., Istomin V. Dissociation and self‑preservation of gas hydrates in permafrost // Geosciences. 2018. V. 8. P. 431–442.
  12. Sun Y.F., Goldberg D. Hydrocarbon signatures from high-resolution attenuation profiles, SEG Technical Program Expanded Abstracts. 1998. P. 996–999.
  13. Romanov V.G. The two-dimensional inverse problem for the equation of viscoelasticity // Siberian mathematical journal. 2012. V. 53 (6). P. 1401–1412.
  14. Liu H.-P., Anderson D.L., Kanamori H. Velocity dispersion due to anelasticity; implications for seismology and mantle composition // Geophysics. 1976. V. 47. P. 41–58.
  15. Hao Q., Greenhalgh S. The generalized standard-linear-solid model and the corresponding viscoacoustic wave equations revisited // Geophysical Journal International. 2019. 219. P. 1939–1947.
  16. Knyazev A.V., Lashuk I. Steepest Descent and Conjugate Gradient Methods with Variable Preconditioning // SIAM Journal on Matrix Analysis and Applications. 2008. 29 (4). 1267.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (87KB)
3.

Download (411KB)
4.

Download (51KB)
5.

Download (80KB)

Copyright (c) 2023 В.А. Чеверда, Д.С. Братчиков, К.Г. Гадыльшин, Е.Н. Голубева, В.В. Малахова, Г.В. Решетова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies