FEATURES OF THE STRUCTURE AND EVOLUTION OF THE LOWER PARTS OF THE CONTINENTAL CRUST OF THE YAKUTIAN DIAMONDIFEROUS PROVINCE IN THE AREA OF THE UPPER-MUNA KIMBERLITE FIELD

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Upper Muna kimberlite field) showed that the crust at different levels is composed of pyroxene, garnet-pyroxene crystalline schists and garnet-pyroxene gneisses. Exsolution textures in pyroxenes and amphiboles, granat rims around grains of ilmenite and pyroxenes indicate that the mineral associations of crystalline schists were formed during cooling at constant pressure. Р–Т equilibrium parameters indicate that garnet-pyroxene crystalline schists are present in the middle crust (P = 7–8 kbar), while garnet-pyroxene gneisses can be considered as rocks of the lower crust (P = 9–10.1 kbar). For the first time, sodalite was found in xenoliths of crystalline schists, which indicates the presence of brines with a high concentration of NaCl at the final stages of rock cooling. The determination of the U–Pb age of zircons testifies to the Neoarchean (2.7 Ma) tectono-thermal event, accompanied by the melting of the crust. In the garnet–pyroxene gneisses, the 1.9 stage is weakly manifistated. The obtained data confirm the earlier conclusion about the vertical and lateral heterogeneity of the crust of the Yakutsk diamondiferous province and the absence of dependence between the degree of crust reworking and spatial location relative to the main collision zones of the Siberian craton.

About the authors

V. S. Shatsky

Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University Novosibirsk; Vinogradov Institute of Geochemistry of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: shatsky@igm.nsc.ru
Russian Federation, Novosibirsk; Russian Federation, Novosibirsk; Russian Federation, Irkutsk

A. L. Ragozin

Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University Novosibirsk

Email: shatsky@igm.nsc.ru
Russian Federation, Novosibirsk; Russian Federation, Novosibirsk

Q. Wang

State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University

Email: shatsky@igm.nsc.ru
China, Nanjing

W. Su

State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University

Email: shatsky@igm.nsc.ru
China, Nanjing

A. A. Ilyin

Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences

Email: shatsky@igm.nsc.ru
Russian Federation, Novosibirsk

M. V. Kolesnichenko

Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences

Email: shatsky@igm.nsc.ru
Russian Federation, Novosibirsk

References

  1. Розен О.М., Манаков А.В., Зинчук Н.Н. Сибирский краон: формирование, алмазоносность. Москва: Научный Мир, 2006. 210 с.
  2. Koreshkova M., Downes H. The age of the lower crust of the central part of the Columbia supercontinent: a review of zircon data // Gondwana Research. 2021. V. 96. P. 37–55.
  3. Shatsky V.S., Malkovets V.G., Belousova E.A., Tretiako-va I.G., Griffin W.L., Ragozin A.L., Wang Q., Gibsher A.A., O’Reilly S.Y. Multi-stage modification of Paleoarchean crust beneath the Anabar tectonic province (Siberian craton) // Precambrian Research. 2018. V. 305. P. 125–144.
  4. Shatsky V.S., Wang Q., Skuzovatov S.Yu., Ragozin A.L. The crust-mantle evolution of the Anabar tectonic province in the Siberian Craton: coupled or decoupled? // Precambrian Research. 2019. V. 332. P. 105388.
  5. Wang X.L., Zhou J.C., Griffin W.L., Zhao G.C., Yu J.H., Qiu J.S., Zhang Y.J., Xing G.F. Geochemical zonation across a Neoproterozoic orogenic belt: Isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen, China // Precambrian Research. 2014. V. 242. P. 154–171.
  6. Ludwig K.R. User’s manual for Isoplot version 3.75–4.15: a geochronological toolkit for Microsoft Excel // Berkeley Geochronological Center Special Publication. 2012. № 5. P. 1–70.
  7. Ellis D.J., Green D.H. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria // Contributions to Mineralogy and Petrology. 1979. V. 71. № 1. P. 13–22.
  8. Ravna E.K. Distribution of Fe2+ and Mg between coexisting garnet and hornblende in synthetic and natural systems: an empirical calibration of the garnet–hornblende Fe–Mg geothermometer // Lithos. 2000. V. 53. №. 3–4. P. 265–277.
  9. Putirka K.D. Thermometers and barometers for volcanic systems // Reviews in mineralogy and geochemistry. 2008. V. 69. № 1. P. 61–120.
  10. Holland T., Blundy J. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry // Contributions to mineralogy and petrology. 1994. V. 116. №. 4. P. 433–447.
  11. Dale J., Holland T., Powell R. Hornblende–garnet–plagioclase thermobarometry: a natural assemblage calibration of the thermodynamics of hornblende // Contributions to Mineralogy and Petrology. 2000. V. 140. №. 3. P. 353–362.
  12. Molina J.F., Moreno J.A., Castro A., Rodrriguez C., Ferhstater G.B. Calcic amphibole thermobarometry in metamorphic and igneous rocks: New calibrations based on plagioclase/amphibole Al–Si partitioning and amphibole/liquid Mg partitioning // Lithos. 2015. V. 232. P. 286–305.
  13. Harley S.L. The solubility of alumina in orthopyroxene coexisting with garnet in FeO–MgO–Al2O3–SiO2 and CaO–FeO–MgO–Al2O3–SiO2 // Journal of Petrology. 1984. V. 25. № 3. P. 665–696.
  14. Шацкий В.С., Бузлукова Л.В., Ягоутц Э., Козьмен-ко О.А., Митюхин С.И. Строение и эволюция нижней коры Далдыно-Алакитского района Якутской алмазоносной провинции (по данным изучения ксенолитов) // Геология и геофизика. 2005. Т. 46. № 12. С. 1273–1289.
  15. Perchuk A.L., Sapegina A.V., Safonov O.G., Yapaskurt V.O., Shatsky V.S., Malkovets V.G. Reduced amphibolite facies conditions in the Precambrian continental crust of the Siberian craton recorded by mafic granulite xenoliths from the Udachnaya kimberlite pipe, Yakutia // Precambrian Research. 2021. V. 357. P. 106122.
  16. Schneider J.B., Jenkins D.M. Stability of sodalite relative to nepheline in NaCl–H2O brines at 750°C: Implications for hydrothermal formation of sodalite // The Canadian Mineralogist. 2020. V. 58. № 1. C. 3–18.
  17. Koreshkova M.Y., Downes H., Levsky L.K., Vladykin N.V. Petrology and geochemistry of granulite xenoliths from Udachnaya and Komsomolskaya kimberlite pipes, Siberia // Journal of Petrology. 2011. V. 52. № 10. P. 1857–1885.
  18. Shatsky V.S., Malkovets V.G., Belousova E.A., Tretiako-va I.G., Griffin W.L., Ragozin A.L., Gibsher A.A., O’Reilly S.Y. Tectonothermal evolution of the continental crust beneath the Yakutian diamondiferous province (Siberian craton): U–Pb and Hf isotopic evidence on zircons from crustal xenoliths of kimberlite pipes // Precambrian Research. 2016. V. 282. P. 1–20.
  19. Moyen J.-F., Paquette J.-L., Ionov D.A., Gannoun A., Korsakov A.V., Golovin A.V., Moine B.N. Paleoproterozoic rejuvenation and replacement of Archaean lithosphere: evidence from zircon U-Pb dating and Hf isotopes in crustal xenoliths at Udachnaya, Siberian craton // Earth and Planetary Science Letters. 2017. V. 457. P. 149–159.
  20. Shatsky V.S., Ragozin A.L., Wang Q., Wu M. Evidence of Eoarchean crust beneath the Yakutian kimberlite province in the Siberian craton // Precambrian Research. 2022. V. 369. P. 106512.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (4MB)
4.

Download (267KB)
5.

Download (339KB)
6.

Download (2MB)
7.

Download (479KB)

Copyright (c) 2023 В.С. Шацкий, А.Л. Рагозин, Ч. Ванг, В. Су, А.А. Ильин, М.В. Колесниченко

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies