PEROXIDASE-LIKE ACTIVITY OF MAGNETIC NANOPARTICLES IN THE PRESENCE OF BLOOD PROTEINS

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The generation of hydroxyl radicals from hydrogen peroxide in aqueous solutions containing magnetic nanoparticles (MNPs), hemoglobin (Hb), immunoglobulin G (IgG), and human serum albumin (HSA) has been determined. The dependence of the rate of formation of the oxidized product of o-phenylenediamine (o-PDA) on the concentration of MNPs in solution, as well as on the concentration of proteins, was obtained. The peroxidase-like activity of MNPs was shown to decrease in the presence of HSA and IgG, while the addition of Hb to the reaction mixture was leading to its decrease and increase depending on protein concentration. The obtained effects can be used in the development of systems based on MNPs for theranostics, in particular, for suppression of tumor growth, and in predicting the ability of particles to catalyze the generation of reactive oxygen species (ROS) in vivo.

作者简介

M. Gorobets

Emanuel Institute of Biochemical Physics of Russian Academy of Sciences

编辑信件的主要联系方式.
Email: maria.g.gorobets@gmail.com
Russian Federation, Moscow

A. Bychkova

Emanuel Institute of Biochemical Physics of Russian Academy of Sciences

Email: maria.g.gorobets@gmail.com
Russian Federation, Moscow

M. Abdullina

Emanuel Institute of Biochemical Physics of Russian Academy of Sciences

Email: maria.g.gorobets@gmail.com
Russian Federation, Moscow

M. Motyakin

Emanuel Institute of Biochemical Physics of Russian Academy of Sciences; N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: maria.g.gorobets@gmail.com
Russian Federation, Moscow; Russian Federation, Moscow

参考

  1. Savliwala S., Chiu-Lam A., Unni M., et al. Magnetic nanoparticles. In: Chung E.J., Leon L., Rinaldi C., editors. Nanoparticles for Biomedical Applications. Amsterdam: // Elsevier; 2020. P. 195–221.
  2. Бычкова А.В., Сорокина О.Н., Розенфельд М.А., и др. Многофункциональные биосовместимые покрытия на магнитных наночастицах // Успехи химии. 2012. Т. 81. № 11. С. 1026–1050.
  3. Gao L., Fan K., Yan X. Iron oxide nanozyme: A multifunctional enzyme mimetic for biomedical applications // Theranostics. 2017. V. 7. № 13. P. 3207–3227.
  4. Lewinski N., Colvin V., Drezek R. Cytotoxicity of Nanoparticles // Small. 2008. Vol. 4. № 1. P. 26–49.
  5. Lui M., Lui B., Lui Q., et al. Nanomaterial-induced ferroptosis for cancer specific therapy // Coordination Chemistry Reviews. 2019. Vol. 382. P. 160–180.
  6. Wang Y., Ding L., Yao C., et al. Toxic effects of metal oxide nanoparticles and their underlying mechanisms // Science China Materials. 2017. Vol. 60. № 2. P. 93–108.
  7. Chubarov A.S. Serum Albumin for Magnetic Nanoparticles Coating // Magnetochemistry 2022. V. 8. № 2. 13. P. 1–18.
  8. Bakhtiary Z., Saei A.A., Hajipour M.J., et al. Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: possibilities and challenges // Nanomedicine: Nanotechnology, Biology, and Medicine. 2016. V. 12. № 2. P. 287–307.
  9. Tenzer S., Docter D., Kuharev J., et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology // Nature nanotechnology. 2013. V. 8. № 10. P. 772–781.
  10. Caño R. del, Mateus L., Sánchez-Obrero G., et al. Hemoglobin bioconjugates with surface-protected gold nanoparticles in aqueous media: the stability depends on solution pH and protein properties // Journal of Colloid and Interface Science. 2017. V. 505. P. 1165–1171.
  11. Tomita D., Kimura T., Hosaka H. et al. Covalent core–shell architecture of hemoglobin and human serum albumin as an artificial O2 carrier // Biomacromolecules. 2013. V. 14. № 6. P. 1816–1825.
  12. Bychkova A.V., Yakunina M.N., Lopukhova M.V., et al. Albumin-functionalized iron oxide nanoparticles for theranostics: engineering and long-term in situ imaging // Pharmaceutics. 2022. V. 14. P. 2771.
  13. Григоренко Ю.А., Метелица Д.И., Пивень Н.В., и др. Высокоэффективная тест-система для определения общей антиоксидантной активности сыворотки крови человека // Биомедицинская химия. 2009. Т. 55. № 3. С. 350–360.
  14. Vetr F., Moradi-Shoeili Z., Özkar S. Oxidation of o-phenylenediamine to 2,3-diaminophenazine in the presence of cubic ferrites MFe2O4 (M = Mn, Co, Ni, Zn) and the application in colorimetric detection of H2O2 // Applied Organometallic Chemistry. 2018. V. 32. № 90. Art. № e4465.
  15. Прусаков В.Е., Максимов Ю.В., Нищев К.Н., и др. Гибридные, биодеградируемые нанокомпозиты на основе биополиэфирной матрицы и магнитных наночастиц оксида железа: структурные, магнитные и электронные характеристики // Химическая физика. 2018. Т. 37. № 1. С. 83–90.
  16. Bychkova A.V., Lopukhova M.V., Wasserman L.A., et al. The influence of pH and ionic strength on the interactions between human serum albumin and magnetic iron oxide nanoparticles // International Journal of Biological Macromolecules. 2022. V. 194. P. 654–665.
  17. Bychkova A.V., Lopukhova M.V., Wasserman L.A., et al. Interaction between immunoglobulin G and peroxidase-like iron oxide nanoparticles: Physicochemical and structural features of the protein // Biochimica et Biophysica Acta (BBA) – Proteins and Proteomics. 2020. V. 1868. № 1. P. 140300.
  18. Fu P.K.-L., Abuzakhm S., Turro C. Photoinduced DNA cleavage and cellular damage in human dermal fibroblasts by 2,3-Diaminophenazine // Photochemistry and Photobiology. 2005. V. 81. P. 89–95.
  19. Gao L., Zhuang J., Nie L., et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles // Nature Nanotechnogy. 2007. V. 2. P. 577–583.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (58KB)
3.

下载 (61KB)
4.

下载 (65KB)
##common.cookie##