BARNASE-BARSTAR SPECIFIC INTERACTION REGULATES CAR-T CELLS CYTOTOXIC ACTIVITY TOWARD MALIGNANCY

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The development of CAR-T specific therapy made a revolution in modern oncology. Despite the pronounced therapeutic effects, this novel approach displayed several crucial limitations caused by the complications in pharmacokinetics and pharmacodynamics controls. The presence of the several severe medical complications of CAR-T therapy initiated a set of attempts aimed to regulate their activity in vivo. We propose to apply the barnase-barstar system to control the cytotoxic antitumor activity of CAR-T cells. To menage the regulation targeting effect of the system we propose to use barstar-modified CAR -T cells together with barnase-based molecules. Barnase was fused with designed ankyrin repeat proteins (DARPins) specific to tumor antigens HER2 (human epidermal growth factor receptor 2) The application of the system demonstrates the pronounced regulatory effects of CAR-T targeting.

作者简介

Roman Kalinin

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: Roman.Kalinin.93@yandex.ru
Russian Federation, Moscow

Alexander Gabibov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; M.V. Lomonosov Moscow State University

Email: Roman.Kalinin.93@yandex.ru
Russian Federation, Moscow; Russian Federation, Moscow

Nikolay Gnuchev

Engelhardt Institute of molecular Biology, Russian Academy of Sciences

Email: Roman.Kalinin.93@yandex.ru
Russian Federation, Moscow

Elena Khurs

Engelhardt Institute of molecular Biology, Russian Academy of Sciences

Email: Roman.Kalinin.93@yandex.ru
Russian Federation, Moscow

Vera Knorre

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: Roman.Kalinin.93@yandex.ru
Russian Federation, Moscow

Stanislav Terekhov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; M.V. Lomonosov Moscow State University

Email: Roman.Kalinin.93@yandex.ru
Russian Federation, Moscow; Russian Federation, Moscow

Mikhail Maschan

Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology

Email: Roman.Kalinin.93@yandex.ru
Russian Federation, Moscow

Alexandr Chernov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: Roman.Kalinin.93@yandex.ru
Russian Federation, Moscow

Georgij Telegin

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: Roman.Kalinin.93@yandex.ru
Russian Federation, Moscow

Alexey Belogurov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; M.V. Lomonosov Moscow State University

Email: Roman.Kalinin.93@yandex.ru
Russian Federation, Moscow; Russian Federation, Moscow

Anastasiia Moysenovich

M.V. Lomonosov Moscow State University

Email: Roman.Kalinin.93@yandex.ru
Russian Federation, Moscow

Igor Yaroshevich

M.V. Lomonosov Moscow State University

Email: Roman.Kalinin.93@yandex.ru
Russian Federation, Moscow

Dmitry Volkov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: Roman.Kalinin.93@yandex.ru
Russian Federation, Moscow

Elena Konovalova

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: Roman.Kalinin.93@yandex.ru
Russian Federation, Moscow

Alexey Schulga

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: Roman.Kalinin.93@yandex.ru
Russian Federation, Moscow

Valeria Ukrainskay

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology

Email: Roman.Kalinin.93@yandex.ru
Russian Federation, Moscow; Russian Federation, Moscow

Yuri Rubtsov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: Roman.Kalinin.93@yandex.ru
Russian Federation, Moscow

Victoria Shipunova

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: Roman.Kalinin.93@yandex.ru
Russian Federation, Moscow

Sergey Deyev

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; National Research University Higher School of Economics

Email: Roman.Kalinin.93@yandex.ru
Russian Federation, Moscow; Russian Federation, Moscow

参考

  1. Weber E.W., Maus M.V., Mackall C.L., The Emerging Landscape of Immune Cell Therapies. Cell. 2020. V. 181. P. 46–62.
  2. Stepanov A.V., et al., Autocrine-based selection of ligands for personalized CAR-T therapy of lymphoma. Sci Adv 2018.V. 4. P. eaau4580.
  3. Turtle C.J., et al., Durable Molecular Remissions in Chronic Lymphocytic Leukemia Treated With CD19-Specific Chimeric Antigen Receptor-Modified T Cells After Failure of Ibrutinib. J Clin Oncol. 2017. V. 35. P. 3010–3020.
  4. Mancikova V., Smida M., Current State of CAR T-Cell Therapy in Chronic Lymphocytic Leukemia. Int J Mol Sci. 2021. V. 22. P. 5536.
  5. Калинин Р.С., et al., Молекулярные подходы к безопасной и контролируемой Т-клеточной терапии. Acta Naturae. 2018. Т. 10. С. 16–23.
  6. Schultz L.M., et al., Disease Burden Affects Outcomes in Pediatric and Young Adult B-Cell Lymphoblastic Leukemia After Commercial Tisagenlecleucel: A Pediatric Real-World Chimeric Antigen Receptor Consortium Report. J Clin Oncol. 2022. V. 40. P. 945–955.
  7. Davila M.L., et al., Efficacy and Toxicity Management of 19-28z CAR T Cell Therapy in B Cell Acute Lymphoblastic Leukemia. Sci Transl Med. 2014. V. 6. P. 224ra25.
  8. Schuster S.J., et al., Chimeric Antigen Receptor T Cells in Refractory B-Cell Lymphomas. N Engl J Med. 2017. V. 377. P. 2545–2554.
  9. Neelapu S.S., et al., Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N Engl J Med. 2017. V. 377. P. 2531–2544.
  10. Urbanska K., et al., A universal strategy for adoptive immunotherapy of cancer through use of a novel T-cell antigen receptor. Cancer Res. 2012. V. 72. P. 1844–1852.
  11. Tamada K., et al., Redirecting gene-modified T cells toward various cancer types using tagged antibodies. Clin. Cancer Res. 2012. V. 18. P. 6436–6445.
  12. Ma J.S.Y., et al., Versatile strategy for controlling the specificity and activity of engineered T cells. Proc. Natl. Acad. Sci. U.S.A. 2016. V. 113. P. E450–458.
  13. Rodgers D.T., et al., Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies. Proc. Natl. Acad. Sci. U.S.A. 2016. V. 113. P. E459–468.
  14. Cho J.H., Collins J.J., Wong W.W., Universal Chimeric Antigen Receptors for Multiplexed and Logical Control of T Cell Responses. Cell. 2018. V. 173. P. 1426–1438.e11.
  15. Hartley R.W., “[38] – Barnase–Barstar Interaction” in Methods in Enzymology, Ribonucleases – Part A., A.W. Nicholson, Ed. (Academic Press, 2001). P. 599–611.
  16. Deyev S.M., Waibel R., Lebedenko E.N., Schubiger A.P., Plückthun A., Design of multivalent complexes using the barnase*barstar module. Nat Biotechnol. 2003. V. 21. P. 1486–1492.
  17. Tolmachev V.M., Chernov V.I., Deyev S.M., Targeted nuclear medicine. Seek and destroy. Russ. Chem. Rev. 2022. V. 91. P. RCR5034.
  18. Steiner D., Forrer P., Plückthun A., Efficient selection of DARPins with sub-nanomolar affinities using SRP phage display. J Mol Biol. 2008. V. 382. P. 1211–1227.
  19. Zahnd C., et al., A Designed Ankyrin Repeat Protein Evolved to Picomolar Affinity to Her2. Journal of Molecular Biology. 2007. V. 369. P. 1015–1028.
  20. Stepanov A.V., et al., Switchable targeting of solid tumors by BsCAR T cells. Proc Natl Acad Sci U S A. 2022. V. 119. P. e2210562119.
  21. Zdobnova T., et al., A novel far-red fluorescent xenograft model of ovarian carcinoma for preclinical evaluation of HER2-targeted immunotoxins. Oncotarget. 2015. V. 6. P. 30919–30928.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (201KB)
3.

下载 (1MB)
##common.cookie##