SYNERGISTIC EFFECT OF THE COMBINED ACTION OF TARGETED AND PHOTODYNAMIC THERAPY ON HER2-POSITIVE BREAST CANCER

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Development of combined schemes for the treatment of oncological diseases is a promising strategy to improve the effectiveness of antitumor therapy. This paper shows the fundamental possibility of multiplying the antitumor effect by combining targeted and photodynamic therapy. It has been demonstrated that sequential treatment of HER-2 positive breast cancer cells with the targeted toxin DARPin-LoPE and the photoactive compound Photodithazine leads to a synergistic enhancement of their effect. In the future, this approach is intended to achieve the maximum therapeutic effect while minimizing the risks of negative side effects.

作者简介

I. Balalaeva

Lobachevsky State University of Nizhny Novgorod

编辑信件的主要联系方式.
Email: irin-b@mail.ru
Russian Federation, Nizhny Novgorod

L. Krylova

Lobachevsky State University of Nizhny Novgorod

Email: biomem@mail.ru
Russian Federation, Nizhny Novgorod

M. Karpova

Lobachevsky State University of Nizhny Novgorod

Email: biomem@mail.ru
Russian Federation, Nizhny Novgorod

A. Shulga

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: biomem@mail.ru
Russian Federation, Moscow

E. Konovalova

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: biomem@mail.ru
Russian Federation, Moscow

E. Guryev

Lobachevsky State University of Nizhny Novgorod

Email: biomem@mail.ru
Russian Federation, Nizhny Novgorod

S. Deyev

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; I.M. Sechenov First Moscow State Medical University

编辑信件的主要联系方式.
Email: biomem@mail.ru
Russian Federation, Moscow; Russian Federation, Moscow

参考

  1. Harbeck N., Penault-Llorca F., Cortes J., et al. // Nature Reviews Disease Primers. 2019. V. 5. № 66.
  2. Gerber D.E. // American Family Physician. 2008. V. 77. № 3. P. 311–319.
  3. Padma V.V. // Biomedicine (Taipei). 2015. V. 5. № 4. P. 19.
  4. Iqbal N., Iqbal N. // Molecular Biology International. 2014.
  5. Higgins M.J., Baselga J. // Journal of Clinical Investigation. 2011. V. 121. № 10. P. 3797–3803.
  6. Tolmachev V.M., Chernov V.I., Deyev S.M. // Russ. Chem. Rev. 2022. V. 91. RCR5034.
  7. Sokolova E.A., Shilova O.N., Kiseleva D.V., et al. // International Journal of Molecular Sciences. 2019. V. 20. № 10.
  8. Shapira A., Benhar I. // Toxins (Basel). 2010. V. 2. № 11. P. 2519–2583.
  9. Sabnis A.J., Bivona T.G. // Trends in Molecular Medicine. 2019. V. 25. №3. P. 185–197.
  10. Plana D., Palmer A.C., Sorger P.K. // Cancer Discovery. 2022. V. 12. № 3. P. 606–624.
  11. Boshuizen J., Peeper D.S. // Molecular Cell. 2020. V. 78. № 6. P. 1002–1018.
  12. Agostinis P., Berg K., Cengel K.A. et al. // CA: A Cancer Journal for Clinicians. 2011. V.61. №4. P. 250–281.
  13. Shramova E.I., Chumakov S.P., Shipunova V.O., et al. // Light Sci. Appl. 2022. V. 11. № 1. P. 38.
  14. Mishchenko T., Balalaeva I., Gorokhova A., et al. // Cell Death & Disease. 2022. V. 13. № 5. P. 455.
  15. Weldon J.E., Pastan I. // The FEBS Journal. 2011. V. 278. № 23. P. 4683–4700.
  16. Shilyagina N.Y., Plekhanov V.I., Shkunov I.V. et al. // Sovremennye Tehnologii v Medicine. 2014. V. 8. P. 15–24.
  17. Guryev E.L., Volodina N.O., Shilyagina N.Y., et al. // Proceedings of the National Academy of Sciences. 2018. V. 115. № 39. P. 9690–9695.
  18. Chu P.L., Shihabuddeen W.A., Low K.P., et al. // Photodiagnosis and Photodynamic Therapy. 2019. V. 27. P. 367–374.
  19. Bhuvaneswari R., Ng Q.F., Thong P.S., Soo K.C. // Oncotarget. 2015. V. 6. № 15. P. 13487–13505.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (58KB)
3.

下载 (47KB)
4.

下载 (543KB)

版权所有 © И.В. Балалаева, Л.В. Крылова, М.А. Карпова, А.А. Шульга, Е.В. Коновалова, Е.Л. Гурьев, С.М. Деев, 2023
##common.cookie##