Investigation of the functional role of the conserved sequence at the 5’-end of the fourth intron of the mod(mdg4) gene in trans-splicing in Drosophila melanogaster

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Alternative splicing is an important mechanism that provides genetic diversity of proteins. Unique loci have been identified in Drosophila melanogaster, where mRNA diversity arises as a result of trans-splicing — a process in which exons from different pre-mRNAs are joined together. The trans-splicing in the mod(mdg4) locus, which encodes more than 31 isoforms, has been studied in detail. Important elements for this process include previously described conserved sequences in the fourth intron. The aim of this study is to further characterize the conserved motifs of the fourth intron, specifically the element at the 5’-end of the intron. Using model transgenic lines, it has been shown that introduced changes in the sequence of the studied element lead to a disruption of trans-splicing. In contrast, similar changes in the endogenous locus did not result in a disruption of trans-splicing. Thus, the conserved element plays a role in trans-splicing but is not critical.

About the authors

Yu. V. Soldatova

Institute of Gene Biology Russian Academy of Sciences

Email: me@mtih.me
Moscow, Russian Federation

O. Beginyazova

Institute of Gene Biology Russian Academy of Sciences

Moscow, Russian Federation

P. G. Georgiev

Institute of Gene Biology Russian Academy of Sciences

Moscow, Russian Federation

M. V. Tikhonov

Institute of Gene Biology Russian Academy of Sciences

Moscow, Russian Federation

References

  1. Wright C.J., Smith C.W.J., Jiggins C.D. Alternative splicing as a source of phenotypic diversity. // Nat Rev Genet, 2022, № 23(11): P. 697–710.
  2. Labrador M., Mongelard F., Plata-Rengifo P., et al. Protein encoding by both DNA strands. // Nature, 2001, № 409(6823): P. 1000.
  3. Horiuchi T., Giniger E., Aigaki T. Alternative trans-splicing of constant and variable exons of a Drosophila axon guidance gene, lola. // Genes Dev, 2003, № 17(20): P. 2496–501.
  4. Shi X., Singh S., Lin E., et al. Chimeric RNAs in cancer. // Adv Clin Chem, 2021, № 100: P. 1–35.
  5. Tikhonov M., Utkina M., Maksimenko O., et al. Conserved sequences in the Drosophila mod(mdg4) intron promote poly(A)-independent transcription termination and trans-splicing. // Nucleic Acids Res, 2018, № 46(20): P. 10608–10618.
  6. Gao J.L., Fan Y.J., Wang X.Y., et al. A conserved intronic U1 snRNP-binding sequence promotes trans-splicing in Drosophila. // Genes Dev, 2015, № 29(7): P. 760–71.
  7. McManus C.J., Duff M.O., Eipper-Mains J., et al. Global analysis of trans-splicing in Drosophila. // Proc Natl Acad Sci USA, 2010, № 107(29): P. 12975–9.
  8. Bonchuk A.N., Balagurov K.I., Baradaran R., et al. The Arthropoda-specific Tramtrack group BTB protein domains use previously unknown interface to form hexamers. // Elife, 2024, № 13.
  9. Melnikova L., Kostyuchenko M., Molodina V., et al. Multiple interactions are involved in a highly specific association of the Mod(mdg4)-67.2 isoform with the Su(Hw) sites in Drosophila. // Open Biol, 2017, № 7(10).
  10. Soldatova Iu., Shepelev M., Georgiev P., et al. A Novel Mechanism for Transcription Termination in the mod(mdg4) Locus of Drosophila melanogaster. // Biology (Basel), 2024 in press.
  11. Kaida D., Berg M.G., Younis I., et al. U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. // Nature, 2010, № 468(7324): P. 664–8.
  12. Tikhonov M., Georgiev P., Maksimenko O. Competition within Introns: Splicing Wins over Polyadenylation via a General Mechanism. // Acta Naturae, 2013, № 5(4): P. 52–61.
  13. Bischof J., Maeda R.K., Hediger M., et al. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. // Proc Natl Acad Sci U S A, 2007, № 104(9): P. 3312–7.
  14. Hernandez G., Vazquez-Pianzola P., Sierra J.M., et al. Internal ribosome entry site drives cap-independent translation of reaper and heat shock protein 70 mRNAs in Drosophila embryos. // RNA, 2004, № 10(11): P. 1783-–97.
  15. Zhang X., Koolhaas W.H., Schnorrer F. A versatile two-step CRISPR- and RMCE-based strategy for efficient genome engineering in Drosophila. // G3 (Bethesda), 2014, № 4(12): P. 2409–18.
  16. Ozturk-Colak A., Marygold S.J., Antonazzo G., et al. FlyBase: updates to the Drosophila genes and genomes database. // Genetics, 2024, № 227(1).
  17. Crooks G.E., Hon G., Chandonia J.M., et al. WebLogo: a sequence logo generator. // Genome Res, 2004, № 14(6): P. 1188–90.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».