Regenerative potential of spiny mice (Acomys cahirinus) manifests in pacemaker myocardium expansion and in predominance of noncanonical, IK,ACH-independent pathway of the cholinergic regulation of the cardiac pacemaking
- 作者: Kuzmin V.S.1,2, Egorov Y.V.1, Karhov A.M.1,2, Boldyreva M.A.1,3, Parfyonova E.V.1
-
隶属关系:
- Federal State Budgetary Institution national medical research centre of cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation
- Moscow State University
- HSE University
- 期: 卷 520, 编号 1 (2025)
- 页面: 151-158
- 栏目: Articles
- URL: https://journals.rcsi.science/2686-7389/article/view/287143
- DOI: https://doi.org/10.31857/S2686738925010255
- EDN: https://elibrary.ru/svzzbl
- ID: 287143
如何引用文章
详细
Spinny mice (Acomys cahirinus) exhibit the ability to regenerate damaged myocardium and functional indices of the heart demonstrated in various models of cardiac pathologies. Cardioregenerative abilities of Acomys are associated with partial preservation of the neonatal phenotype of cardiac tissue in adult animals. An electrophysiology of the untypical Acomys myocardium is extremely poorly elucidated. In the presented study, the bioelectric properties; as well as the mechanisms of parasympathetic control of the pacemaker of the heart of spiny mice was investigated using ECG in vivo recording, registration of action potential and mapping of activation pattern of the supraventricular myocardium. It was found that pacemaker-type action potentials are detected in a significant part of the right atrium while primary activation occurs approximately in 41% or the atrium surface in Acomys. Cholinergic stimulation causes pronounced suppression of automaticity and induces changes in the pattern of activation of the pacemaker myocardium of spiny mice. Cholinergic inhibition of automaticity in Acomys is mediated by IKAch-independent mechanisms. Thus, the cardioregenerative potential of spiny mice manifests in delocalization and non-classical regulation of the cardiac pacemaker.
全文:

作者简介
V. Kuzmin
Federal State Budgetary Institution national medical research centre of cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation; Moscow State University
编辑信件的主要联系方式.
Email: ku290381@mail.ru
Moscow State University, biological faculty, department of human and animals physiology
俄罗斯联邦, Moscow; MoscowYu. Egorov
Federal State Budgetary Institution national medical research centre of cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation
Email: ku290381@mail.ru
俄罗斯联邦, Moscow
A. Karhov
Federal State Budgetary Institution national medical research centre of cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation; Moscow State University
Email: ku290381@mail.ru
Moscow State University, biological faculty, department of human and animals physiology
俄罗斯联邦, Moscow; MoscowM. Boldyreva
Federal State Budgetary Institution national medical research centre of cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation; HSE University
Email: ku290381@mail.ru
Faculty of Biology and Biotechnology
俄罗斯联邦, Moscow; MoscowE. Parfyonova
Federal State Budgetary Institution national medical research centre of cardiology named after academician E.I. Chazov of the Ministry of Health of the Russian Federation
Email: ku290381@mail.ru
Corresponding Member of the RAS
俄罗斯联邦, Moscow参考
- Gaire J., Varholick J., Rana S., et al. Spiny mouse (Acomys): an emerging research organism for regenerative medicine with applications beyond the skin // NPJ Regen Med. 2021. Vol. 6. N. 1. P. 1–16.
- Koopmans T., van Beijnum H., Roovers E., et al. Ischemic tolerance and cardiac repair in the spiny mouse (Acomys) // NPJ Regen Med. 2021. Vol. 6. N. 1. P. 78–98.
- Qi Y., Dasa O., Maden M., et al. Functional heart recovery in an adult mammal, the spiny mouse // Int J Cardiol. 2021. Vol. 1. N. 338. P. 196–203.
- Peng H., Shindo K., Donahue R., et al. Adult spiny mice (Acomys) exhibit endogenous cardiac recovery in response to myocardial infarction // NPJ Regen Med. 2021. Vol. 6. N 1. P. 74–84.
- Farraj A., Hazari M., Cascio W. The utility of the small rodent electrocardiogram in toxicology // Toxicological Sciences. 2011. Vol. 121, N 1. P. 11–30.
- Kuzmin, V., Malykhina, I., Pustovit, K., et al. Inflammatory degranulation of the cardiac resident mast cells suppresses the pacemaking and affects activation pattern in the sinoatrial node // Translational Research in Anatomy. 2022. Vol. 26. 100170.
- Kuzmin V., Abramov A., Egorov Y., et al. Hypothermia-induced postrepolarization refractoriness is the reason of the atrial myocardium tolerance to the bioelectrical activity disorders in the hibernating and active ground squirrel Citellus undulatus // Dokl Biol Sci. 2019. Vol. 486. N. 1. P. 63–68.
- Ivanova A., Samoilova D., Razumov A., et al. Rat caval vein myocardium undergoes changes in conduction characteristics during postnatal ontogenesis // Pflugers Arch. 2019 Vol. 471. N. 11–12. P. 1493–1503.
- Потехина В.М., Аверина О.А., Кузьмин В.С. Суправентрикулярный миокард сердца мышей B6CBAF1 проявляет генетически обусловленную аритмогенность благодаря эктопической автоматии и триггерной активности // Вестник Московского университета. Серия 16. Биология. 2019. T. 74. №2. С.115–122
- Kuzmin V., Potekhina V., Odnoshivkina Y., et al. Proarrhythmic atrial ectopy associated with heart sympathetic innervation dysfunctions is specific for murine B6CBAF1 hybrid strain // Life Sci. 2021 Feb 1; 266: 118887.
- Heier C., Hampton T., Wang D., et al. Development of electrocardiogram intervals during growth of FVB/N neonate mice // BMC Physiol. 2010. Vol. 10. N. 16.
- Tapilina S., Abramochkin D., Sukhova G., et al. Cholinergic inexcitability in the sinoatrial node of the mouse // Dokl Biol Sci. 2010. Vol. 435. P. 393–397.
- Wiese C., Grieskamp T., Airik R., et al. Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3 // Circ Res. 2009. Vol. 104. N. 3. P. 388–397.
- Anderson R., Brown N., Moorman A., Development and structures of the venous pole of the heart // Dev Dyn. 2006. Vol. 235. N. 1. P. 2–9.
- Tapilina S., Abramochkin D. Decrease in the Sensitivity of Myocardium to M3 Muscarinic Receptor Stimulation during Postnatal Ontogenisis // Acta Naturae. 2016. Vol. 8. N. 2. P. 127–31.
- Ivanova A., Tapilina S., Kuz’min V. Role of Muscarinic M1, M2, and M3 Receptors in the Regulation of Electrical Activity of Myocardial Tissue of Caval Veins during the Early Postnatal Ontogeny // Bull Exp Biol Med. 2019. Vol. 166. N. 4. P. 421–425.
- Bogdanov K., Maltsev V., Vinogradova T., et al. Membrane potential fluctuations resulting from submembrane Ca2+ releases in rabbit sinoatrial nodal cells impart an exponential phase to the late diastolic depolarization that controls their chronotropic state // Circ Res. 2006. Vol. 99. N. 9. P. 979–987.
- Alkass K., Panula J., Westman M., et al. No Evidence for Cardiomyocyte Number Expansion in Preadolescent Mice // Cell. 2015. Vol. 163, N. 4. P. 1026–1036.
- Adachi T., Shibata S., Okamoto Y., et al. The mechanism of increased postnatal heart rate and sinoatrial node pacemaker activity in mice // J Physiol Sci. 2013. Vol. 63. N. 2. P. 133–146.
- Ryvkin A., Furman A., Lebedeva E., et al. Analysis of changes in the action potential morphology of the mouse sinoatrial node true pacemaker cells during ontogenetic development in vitro and in silico // Dev Dyn. 2024. Vol. 253. N. 10. P. 895–905.
补充文件
