Transcriptomic shifts in Multipotent mesenchymal stromal cells during microgravity simulation
- Авторлар: Yakubets D.A.1, Buravkova L.B.1
-
Мекемелер:
- Institute of Biomedical Problems, Russian Academy of Sciences
- Шығарылым: Том 520, № 1 (2025)
- Беттер: 95-99
- Бөлім: Articles
- URL: https://journals.rcsi.science/2686-7389/article/view/287124
- DOI: https://doi.org/10.31857/S2686738925010159
- EDN: https://elibrary.ru/tchpes
- ID: 287124
Дәйексөз келтіру
Аннотация
One of the most obvious manifestations of the negative impact of space flight factors on the human physiology is osteopenia. With the active development of manned space flights and the increase in the duration of humans’ persistence in zero gravity, there is a growing need to understand the mechanisms of changes occurring at the cellular level involved in the replenishment of bone tissue. Using the RNA sequencing method, changes in the transcriptome profile of MMSCs were studied after a 5-day simulation of the microgravity effects. During the analysis, a pronounced downregulation of genes, which products are involved in processes associated with cell proliferation, in particular, in the mitotic phase of the cell cycle, was found in the experimental group of cells. These shifts in the transcriptional profile of MMSCs were confirmed using fluorescence microscopy. The results obtained indicate a decrease in the proliferative activity of MMSCs cultured under conditions of simulated microgravity for 5 days.
Толық мәтін

Авторлар туралы
D. Yakubets
Institute of Biomedical Problems, Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: lizard_96@mail.ru
Ресей, Moscow
L. Buravkova
Institute of Biomedical Problems, Russian Academy of Sciences
Email: lizard_96@mail.ru
Сorresponding Мember of the RAS
Ресей, MoscowӘдебиет тізімі
- Буравкова Л.Б. Механизмы клеточной гравичувствительности. М.: ГНЦ РФ – ИМБП РАН; 2018.
- Gershovich P., Gershovich J., Zhambalova A., et al. Cytoskeletal proteins and stem cell markers gene expression in human bone marrow mesenchymal stromal cells after different periods of simulated microgravity // Acta Astronautica. 2012. Vol. 70, P. 36–42.
- Andrews, S. (n.d.). FastQC A Quality Control tool for High Throughput Sequence Data. Доступно по: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ Ссылка активна на 25 сентября 2024.
- Krueger, F. (2021). Trim Galore. Доступно по: https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ Ссылка активна на 25 сентября 2024.
- Kim, D., Langmead, B., Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements // Nature Methods. 2015. Т. 12 №4, 357–360.
- Liao, Y., Smyth, G. K., Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features // Bioinformatics. 2013. Т. 30. № 7. 923–930.
- Love, M. I., Huber, W., & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 // Genome Biology. 2014. T. 15. № 12.
- Szklarczyk, D., Kirsch, R., Koutrouli, M., et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest // Nucleic acids research. 2023. T. 51, №D1, C. 638–D646.
- Gene Ontology Consortium. The Gene Ontology resource: enriching a GOld mine // Nucleic Acids Res. 2021. Т. 49, №D1. С. 325-D334.
- Li X., Huang W., Huang W., et al. Kinesin family members KIF2C/4A/10/11/14/18B/20A/23 predict poor prognosis and promote cell proliferation in hepatocellular carcinoma // Am J Transl Res. 2020. Т. 12, №5. С. 1614-1639.
- Li L., Zhang C., Chen J.L., et al. Effects of simulated microgravity on the expression profiles of RNA during osteogenic differentiation of human bone marrow mesenchymal stem cells // Cell Prolif. 2019. Т. 52, №2. С. 12539.
- Wei L., Diao Y., Qi J., et al. Effect of change in spindle structure on proliferation inhibition of osteosarcoma cells and osteoblast under simulated microgravity during incubation in rotating bioreactor // PLoS One. 2013. Т. 8, №10. С. 76710
- Tran M.T., Ho C.N.Q., Hoang S.N., et al. Morphological Changes of 3T3 Cells under Simulated Microgravity // Cells. 2024. Т. 13, № 4. С. 344.
- Ratushnyy, A.Y., & Buravkova, L.B. Microgravity Effects and Aging Physiology: Similar Changes or Common Mechanisms? // Biochemistry. Biokhimiia. 2023. Т. 88. №11. С. 1763–1777.
- Touchstone, H., Bryd, R., Loisate, S., et al. Recovery of stem cell proliferation by low intensity vibration under simulated microgravity requires LINC complex //NPJ microgravity. 2019.Т. 5, № 11.
- Sokolovskaya, A.A., Sergeeva, E.A., Metelkin, et al. The Expression of Cell Cycle Cyclins in a Human Megakaryoblast Cell Line Exposed to Simulated Microgravity // International journal of molecular sciences. 2024. Т. 25. №12. С. 6484.
- Yuge, L., Kajiume, T., Tahara, H., et al. Microgravity potentiates stem cell proliferation whilesustaining the capability of differentiation // Stem CellsDev. 2006. Т. 15, С. 921–929.
- Ho, C.N.Q., Hoang, S.N., Nguyen, H.H., et al. The adaptation of 3T3 cells to simulated microgravity by retrieving the major cell cycle-related protein expression during long-term in vitro proliferation // Tissue & cell. 2024. Т. 89. C. 102460.
- Sokolovskaya A., Ignashkova T., Bochenkova A., et al. Effects of simulated microgravity on cell cycle in human endothelial cells // Acta Astronautica. 2014. Т. 99. С. 16–23.
- Markina E., Tyrina E., Ratushnyy A., et al. Heterotypic Cell Culture from Mouse Bone Marrow under Simulated Microgravity: Lessons for Stromal Lineage Functions // International Journal of Molecular Sciences. 2023. T. 24. №18, 13746.
Қосымша файлдар
