Numerical study of swirling flows in converging channels with a concave base as an analogy to blood flow in the heart and aorta
- Authors: Zharkov Y.E.1, Agafonov A.V.1, Gorodkov A.Y.1, Bockeria L.A.1
-
Affiliations:
- A.N. Bakulev National Medical Research Center for Cardiovascular Surgery
- Issue: Vol 520, No 1 (2025)
- Pages: 68-82
- Section: Articles
- URL: https://journals.rcsi.science/2686-7389/article/view/287118
- DOI: https://doi.org/10.31857/S2686738925010128
- EDN: https://elibrary.ru/tcmsbe
- ID: 287118
Cite item
Abstract
The study presents a numerical parametric investigation of flow structures in channels with a longitudinal-radial profile zRN = Const and a spherical dome at the base. The goal of the study was to examine the flow structures in these channels depending on the exponent N of the profile and the height of the dome, to determine the conditions that provide optimal centripetal swirling flow, analogous to blood flow in the heart chambers and major vessels. The investigation was conducted using a comparative analysis of flow structures in channel configurations zRN = Const, carried out in two stages. In the first stage, the convergence parameter N was varied from 1.25 to 2.75 to identify the value that ensures optimal flow conditions. In the second stage, for the established value of N, the dome height was varied from 2.5 mm to 15 mm to identify the beneficial effects associated with its presence. The method of investigation involved numerical modeling in a steady-state regime. The results of the study on the influence of the convergence parameter revealed that the profile zR2 = Const provides optimal conditions for the formation of swirling flow with minimal specific losses and a uniform distribution of velocity gradients. This channel configuration also showed the best agreement with the analytical solutions for Burgers’ vortex, confirming its effectiveness in the static approximation of flows. The parametric investigation of dome height indicated that an optimal dome height of 7 mm contributes to the smoothing of velocity gradients and the reduction of viscous losses due to the optimal enhancement of the centripetal swirling flow scale.
Full Text

About the authors
Ya. E. Zharkov
A.N. Bakulev National Medical Research Center for Cardiovascular Surgery
Email: agorodkov@bk.ru
Russian Federation, Moscow
A. V. Agafonov
A.N. Bakulev National Medical Research Center for Cardiovascular Surgery
Email: agorodkov@bk.ru
Russian Federation, Moscow
Alex. Y. Gorodkov
A.N. Bakulev National Medical Research Center for Cardiovascular Surgery
Author for correspondence.
Email: agorodkov@bk.ru
Russian Federation, Moscow
L. A. Bockeria
A.N. Bakulev National Medical Research Center for Cardiovascular Surgery
Email: agorodkov@bk.ru
Academician of the RAS
Russian Federation, MoscowReferences
- Городков, А.Ю. Анализ структуры внутрисердечного закрученного потока крови на основании морфометрии трабекулярного рельефа левого желудочка сердца / А.Ю. Городков // Бюллетень НЦССХ им. А.Н. Бакулева РАМН. Сердечно-сосудистые заболевания. 2003. Т. 4, № 9. С. 61–66.
- Frazin L.J., et al. Functional chiral asymmetry in descending thoracic aorta //Circulation. 1990. Т. 82. № 6. С. 1985–1994.
- Da Li, Jiarong Wang, Wen Zeng, Xiangguo Zeng, Zhan Liu, Haoyao Cao, Ding Yuan, Tinghui Zheng. The loss of helical flow in the thoracic aorta might be an identifying marker for the risk of acute type B aortic dissection. Computer Methods and Programs in Biomedicine, Volume 230, 2023, 107331.
- Frazin L.J., et al. Confirmation and initial documentation of thoracic and abdominal aortic helical flow. An ultrasound study //ASAIO Journal (American Society for Artificial Internal Organs: 1992). 1996. Т. 42. № 6. С. 951–956.
- Бокерия Л.А. и др. Анализ поля скоростей закрученного потока крови в аорте магнитно-резонансной велосиметрии //Бюллетень НЦССХ им. АН Бакулева РАМН. Сердечно-сосудистые заболевания. 2003. Т. 4. № 9. С. 70–74.
- Gorodkov A., Dobrova N.B., Kuzmina N.B. et al. Anatomical structures determining blood flow in the heart left ventricle // Journal of Materials Science: Materials in Medicine. 1996. Vol. 7, No. 3. P. 153–160.
- Liu X, Sun A, Fan Y, Deng X. Physiological significance of helical flow in the arterial system and its potential clinical applications. Ann Biomed Eng. 2015 Jan;43(1):3–15.
- Кикнадзе Г.И. и др. О структуре потока в левом желудочке сердца и аорте с применением точных решений нестационарных уравнений гидродинамики и морфометрических исследований //Докл. АН. 1996. Т. 351. №. 1. С. 119.
- Bockeria L.A., Gorodkov A.Y., Kiknadze G.I., Gachechiladze I.A. Application of Tornado-flow fundamental hydrodynamic theory to the study of blood flow in the heart – Further development of Tornado-like jet technology // ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011, Denver, CO, 11–17 ноября 2011 года. Vol. 2. Denver, CO, 2011. P. 287–296.
- Markl M., Kilner P.J., Ebbers T. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance //Journal of Cardiovascular Magnetic Resonance. 2011. Т. 13. № 1. С. 7.
- Количественная оценка состояния внутрисердечного потока крови по динамической анатомии левого желудочка сердца на основании точных решений нестационарных уравнений гидродинамики для класса смерчеобразных потоков вязкой жидкости / Е.А. Талыгин, Н.А. Зазыбо, Ш.Т. Жоржолиани [и др.] // Успехи физиологических наук. 2016. Т. 47, № 1. С. 48–68.
- Жоржолиани Ш.Т., Миронов А.А., Талыгин Е.А. и др. Анализ динамической геометрической конфигурации проточного канала аорты с позиций смерчевой самоорганизации потока крови // Бюллетень экспериментальной биологии и медицины. 2017. Т. 164, № 10. – С. 519–524.
- Tanaka M., et al. Spiral systolic blood flow in the ascending aorta and aortic arch analyzed by echo-dynamography //Journal of cardiology. 2010. Т. 56. № 1. С. 97–110.
- Жарков Я.Е., Жоржолиани Ш.Т., Сергеев А.А. и др. Экспериментальное и модельное исследование закрученного течения жидкости в сходящемся канале в качестве модели движения крови в сердце и аорте / // Доклады Российской академии наук. Науки о жизни. 2024. Т. 515, № 1. С. 104–121.
- Кикнадзе Г.И., Краснов Ю.К. “Эволюция смерчеобразных течений вязкой жидкости”, Докл. АН СССР, 290:6 (1986), 1315–1319.
- Burgers J.M. A mathematical model illustrating the theory of turbulence //Advances in applied mechanics. 1948. Т. 1. С. 171–199.
- Патент № 2691705 C1 Российская Федерация, МПК F15D 1/00. Способ отсасывания пограничного слоя сплошной среды с поверхности тела и устройство для его реализации : № 2018119493 : заявл. 28.05.2018 : опубл. 17.06.2019 / Г. И. Кикнадзе, Е.А. Талыгин, А.Ю. Городков.
- Wilcox D.C. Formulation of the kw turbulence model revisited //AIAA journal. 2008. Т. 46. № 11. С. 2823–2838.
- Wilcox D.C., et al. Turbulence modeling for CFD. – La Canada, CA: DCW industries, 1998. Т. 2. С. 103–217.
- Bradshaw P. An introduction to turbulence and its measurement: thermodynamics and fluid mechanics series. Elsevier, 2013.
- Versteeg H.K., Malalasekera W. An introduction to computational fluid dynamics: the finite volume method. Pearson education, 2007.
- Митрофанова О.В. Гидродинамика и теплообмен закрученных потоков в каналах с завихрителями // Теплофизика высоких температур, 2003. Т. 41. №4. С. 587–633.
- Brown C.H., et al. Morphological, biochemical, and functional changes in human platelets subjected to shear stress //The Journal of laboratory and clinical medicine. 1975. Т. 86. № 3. С. 462–471.
- Leverett L.B., et al. Red blood cell damage by shear stress //Biophysical journal. 1972. Т. 12. № 3. С. 257–273.
- Yen J.H., et al. The effect of turbulent viscous shear stress on red blood cell hemolysis //Journal of Artificial Organs. 2014. Т. 17. С. 178–185.
- Sutera S.P. Flow-induced trauma to blood cells //Circulation research. 1977. Т. 41. №. 1. С. 2–8.
Supplementary files
