Numerical study of swirling flows in converging channels with a concave base as an analogy to blood flow in the heart and aorta

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study presents a numerical parametric investigation of flow structures in channels with a longitudinal-radial profile zRN = Const and a spherical dome at the base. The goal of the study was to examine the flow structures in these channels depending on the exponent N of the profile and the height of the dome, to determine the conditions that provide optimal centripetal swirling flow, analogous to blood flow in the heart chambers and major vessels. The investigation was conducted using a comparative analysis of flow structures in channel configurations zRN = Const, carried out in two stages. In the first stage, the convergence parameter N was varied from 1.25 to 2.75 to identify the value that ensures optimal flow conditions. In the second stage, for the established value of N, the dome height was varied from 2.5 mm to 15 mm to identify the beneficial effects associated with its presence. The method of investigation involved numerical modeling in a steady-state regime. The results of the study on the influence of the convergence parameter revealed that the profile zR2 = Const provides optimal conditions for the formation of swirling flow with minimal specific losses and a uniform distribution of velocity gradients. This channel configuration also showed the best agreement with the analytical solutions for Burgers’ vortex, confirming its effectiveness in the static approximation of flows. The parametric investigation of dome height indicated that an optimal dome height of 7 mm contributes to the smoothing of velocity gradients and the reduction of viscous losses due to the optimal enhancement of the centripetal swirling flow scale.

Full Text

Restricted Access

About the authors

Ya. E. Zharkov

A.N. Bakulev National Medical Research Center for Cardiovascular Surgery

Email: agorodkov@bk.ru
Russian Federation, Moscow

A. V. Agafonov

A.N. Bakulev National Medical Research Center for Cardiovascular Surgery

Email: agorodkov@bk.ru
Russian Federation, Moscow

Alex. Y. Gorodkov

A.N. Bakulev National Medical Research Center for Cardiovascular Surgery

Author for correspondence.
Email: agorodkov@bk.ru
Russian Federation, Moscow

L. A. Bockeria

A.N. Bakulev National Medical Research Center for Cardiovascular Surgery

Email: agorodkov@bk.ru

Academician of the RAS

Russian Federation, Moscow

References

  1. Городков, А.Ю. Анализ структуры внутрисердечного закрученного потока крови на основании морфометрии трабекулярного рельефа левого желудочка сердца / А.Ю. Городков // Бюллетень НЦССХ им. А.Н. Бакулева РАМН. Сердечно-сосудистые заболевания. 2003. Т. 4, № 9. С. 61–66.
  2. Frazin L.J., et al. Functional chiral asymmetry in descending thoracic aorta //Circulation. 1990. Т. 82. № 6. С. 1985–1994.
  3. Da Li, Jiarong Wang, Wen Zeng, Xiangguo Zeng, Zhan Liu, Haoyao Cao, Ding Yuan, Tinghui Zheng. The loss of helical flow in the thoracic aorta might be an identifying marker for the risk of acute type B aortic dissection. Computer Methods and Programs in Biomedicine, Volume 230, 2023, 107331.
  4. Frazin L.J., et al. Confirmation and initial documentation of thoracic and abdominal aortic helical flow. An ultrasound study //ASAIO Journal (American Society for Artificial Internal Organs: 1992). 1996. Т. 42. № 6. С. 951–956.
  5. Бокерия Л.А. и др. Анализ поля скоростей закрученного потока крови в аорте магнитно-резонансной велосиметрии //Бюллетень НЦССХ им. АН Бакулева РАМН. Сердечно-сосудистые заболевания. 2003. Т. 4. № 9. С. 70–74.
  6. Gorodkov A., Dobrova N.B., Kuzmina N.B. et al. Anatomical structures determining blood flow in the heart left ventricle // Journal of Materials Science: Materials in Medicine. 1996. Vol. 7, No. 3. P. 153–160.
  7. Liu X, Sun A, Fan Y, Deng X. Physiological significance of helical flow in the arterial system and its potential clinical applications. Ann Biomed Eng. 2015 Jan;43(1):3–15.
  8. Кикнадзе Г.И. и др. О структуре потока в левом желудочке сердца и аорте с применением точных решений нестационарных уравнений гидродинамики и морфометрических исследований //Докл. АН. 1996. Т. 351. №. 1. С. 119.
  9. Bockeria L.A., Gorodkov A.Y., Kiknadze G.I., Gachechiladze I.A. Application of Tornado-flow fundamental hydrodynamic theory to the study of blood flow in the heart – Further development of Tornado-like jet technology // ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011, Denver, CO, 11–17 ноября 2011 года. Vol. 2. Denver, CO, 2011. P. 287–296.
  10. Markl M., Kilner P.J., Ebbers T. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance //Journal of Cardiovascular Magnetic Resonance. 2011. Т. 13. № 1. С. 7.
  11. Количественная оценка состояния внутрисердечного потока крови по динамической анатомии левого желудочка сердца на основании точных решений нестационарных уравнений гидродинамики для класса смерчеобразных потоков вязкой жидкости / Е.А. Талыгин, Н.А. Зазыбо, Ш.Т. Жоржолиани [и др.] // Успехи физиологических наук. 2016. Т. 47, № 1. С. 48–68.
  12. Жоржолиани Ш.Т., Миронов А.А., Талыгин Е.А. и др. Анализ динамической геометрической конфигурации проточного канала аорты с позиций смерчевой самоорганизации потока крови // Бюллетень экспериментальной биологии и медицины. 2017. Т. 164, № 10. – С. 519–524.
  13. Tanaka M., et al. Spiral systolic blood flow in the ascending aorta and aortic arch analyzed by echo-dynamography //Journal of cardiology. 2010. Т. 56. № 1. С. 97–110.
  14. Жарков Я.Е., Жоржолиани Ш.Т., Сергеев А.А. и др. Экспериментальное и модельное исследование закрученного течения жидкости в сходящемся канале в качестве модели движения крови в сердце и аорте / // Доклады Российской академии наук. Науки о жизни. 2024. Т. 515, № 1. С. 104–121.
  15. Кикнадзе Г.И., Краснов Ю.К. “Эволюция смерчеобразных течений вязкой жидкости”, Докл. АН СССР, 290:6 (1986), 1315–1319.
  16. Burgers J.M. A mathematical model illustrating the theory of turbulence //Advances in applied mechanics. 1948. Т. 1. С. 171–199.
  17. Патент № 2691705 C1 Российская Федерация, МПК F15D 1/00. Способ отсасывания пограничного слоя сплошной среды с поверхности тела и устройство для его реализации : № 2018119493 : заявл. 28.05.2018 : опубл. 17.06.2019 / Г. И. Кикнадзе, Е.А. Талыгин, А.Ю. Городков.
  18. Wilcox D.C. Formulation of the kw turbulence model revisited //AIAA journal. 2008. Т. 46. № 11. С. 2823–2838.
  19. Wilcox D.C., et al. Turbulence modeling for CFD. – La Canada, CA: DCW industries, 1998. Т. 2. С. 103–217.
  20. Bradshaw P. An introduction to turbulence and its measurement: thermodynamics and fluid mechanics series. Elsevier, 2013.
  21. Versteeg H.K., Malalasekera W. An introduction to computational fluid dynamics: the finite volume method. Pearson education, 2007.
  22. Митрофанова О.В. Гидродинамика и теплообмен закрученных потоков в каналах с завихрителями // Теплофизика высоких температур, 2003. Т. 41. №4. С. 587–633.
  23. Brown C.H., et al. Morphological, biochemical, and functional changes in human platelets subjected to shear stress //The Journal of laboratory and clinical medicine. 1975. Т. 86. № 3. С. 462–471.
  24. Leverett L.B., et al. Red blood cell damage by shear stress //Biophysical journal. 1972. Т. 12. № 3. С. 257–273.
  25. Yen J.H., et al. The effect of turbulent viscous shear stress on red blood cell hemolysis //Journal of Artificial Organs. 2014. Т. 17. С. 178–185.
  26. Sutera S.P. Flow-induced trauma to blood cells //Circulation research. 1977. Т. 41. №. 1. С. 2–8.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Geometrical configuration of channels and boundary conditions used for numerical modeling. The geometrical configuration of channels includes three regions with two types of boundary conditions. Region (1) is a part of the channel with a converging bed, the boundary of which is determined by the expression zRN = K + z0. The channel convergence index N was varied from 1.25 to 2.75, the variation region is shown in green. Region (2) corresponded to the entrance slit to the channel and remained unchanged during the numerical modeling. Region (3), shown in purple, is formed by a spherical dome with a height from 0 (no dome) to 1.25 cm. The boundary conditions included static pressures at the entrance and exit of the channel, and the Wall Function condition without taking into account adhesion was used to describe the walls.

Download (139KB)
3. Fig. 2. Dependence of integral losses due to viscous friction in a steady state on the channel convergence index zRN = Const. The red round marker indicates the calculated values ​​obtained as a result of numerical modeling of a steady flow. The blue line is the interpolation curve Mod. Akima, approximating the shape of the dependence of integral viscous losses on the channel convergence index N. The black marker reflects the minimum point of the interpolation curve. It is evident from Fig. 2 that the dependence of integral losses due to viscous friction has a minimum point at the convergence index value N = 2.32, which differs from the expected minimum at N = 2.

Download (89KB)
4. Fig. 3. Distribution of total viscous losses on the example of channel N = 2 and the main areas of their localization. The figure shows that there are three main zones of loss localization: I) the wall zone of intense constriction; II) the axial zone at the constriction; III) the area of ​​maximum constriction of the channel. The analysis of the causes of the occurrence of loss localization areas was carried out using the assessment of the contribution of the components of the viscous loss tensor to each area.

Download (82KB)
5. Fig. 4. Distribution of azimuthal velocity (a), contribution of longitudinal-radial component of viscous losses (b), components of the main diagonal of the tensor (c – d), longitudinal-radial component (e) and distribution of viscous losses (e) in the channel N = 2. Spatial distributions of the parameters illustrate the general nature of the flow using the example of a channel with the convergence index N = 2. The development of the flow after the entrance slit is accompanied by an increase in radial, azimuthal and azimuthal-radial losses, which is a consequence of the increase in the azimuthal velocity of the liquid. In the region of intense narrowing near the channel axis (region II), there is a decrease in the swirling of the liquid with the transformation of the azimuthal velocity into longitudinal. Longitudinal mass transfer of liquid in the channel in the axial zone leads to the formation of a wall flow (region I), which merges with the main flow when approaching region III, where the longitudinal velocity of the liquid flow predominates.

Download (489KB)
6. Fig. 5. Dependences of integrals of viscous loss tensor components for channels with convergence indices N = 1.25 – 2.75. This image is the dependence in Fig. 2, decomposed into components of the loss tensor. The integral characteristics of losses show that an increase in the convergence index of 1.25 to 2.75 leads to an increase in azimuth-radial losses, reflecting friction during jet rotation, while longitudinal losses decrease nonlinearly. Analysis of the distributions in Fig. 6 showed that the nature of the change in this type of loss is determined by the region of their localization, depending on the convergence index. Dependences of the integral values ​​of the longitudinal-radial component show the existence of a local maximum in the region of convergence indices N = 1.25 – 1.75. The reasons for its occurrence are shown in Fig. 7.

Download (141KB)
7. Fig. 6. Distribution of total viscous losses (a-c) and azimuthal velocities for channels (d-e) for the convergence index N = 1.5, 2.25, 2.75 for analyzing the differences in flow structures in channels with different convergence. Spatial distributions of viscous loss parameters and azimuthal velocity demonstrate a correlation between the vortex intensity and the loss localization regions. In the case of N = 1.5, low azimuthal velocity values ​​lead to high losses in the channel outlet region. High vortex intensity in the channel N = 2.75 leads to the occurrence of high velocity gradients in the channel constriction region. The flow in the channel N = 2.25 demonstrates an intermediate distribution between the two extreme cases.

Download (507KB)
8. Fig. 7. Distribution of total viscous losses (a-c) and azimuthal velocities (g-e) in channels N = 1.25, 1.5, 1.75 for analysis of the causes of the local maximum of longitudinal-radial losses in the range of N = 1.25 – 1.75. Spatial distributions of the parameters show the cause of the local maximum of longitudinal-radial losses in the convergence range of N = 1.25 – 1.75. An increase in the length of the channel wall leads to an increase in longitudinal-radial losses in region I. The Coanda effect, which occurs due to the existence of a vortex, is a counteracting factor to this.

Download (493KB)
9. Fig. 8. Dependence of viscous losses on the convergence index N, reduced to the channel volume. The dependence of specific viscous losses showed that the most energy-efficient channel is one with a convergence index N = 2.05. The increase in losses with an increase in the convergence index above 2.05 occurs due to an increase in the azimuthal velocity in the vortex. The increase in losses with a decrease in the index below 2.05 is explained by an increase in losses in the areas near the channel walls.

Download (87KB)
10. Fig. 9. The root-mean-square deviation of the longitudinal velocity RMS(uz) for channels of different shapes (a) with an analytical solution and with modeling in Comsol Multiphysics. From Fig. 9, a it follows that the longitudinal velocity distribution formed in the channel with a convergence index N = 2 has the best match with the analytical expression according to the root-mean-square deviation criterion, but the value with a convergence index N = 1.75 is only 0.3% higher. In this regard, the comparison included an analysis of the average longitudinal velocity at the outlet for channels N = 1.75 and 2. A comparison of the velocities in the outlet section of the channels showed that the difference in the average velocity calculated by the two methods is 0.5 m/s with a convergence index of N = 1.75 and 0.02 m/s in the case of N = 2, which indicates the identity of the flows obtained by the two methods for a channel with a convergence of N = 2 in the longitudinal velocity parameter.

Download (67KB)
11. Fig. 10. Interpolation dependence of total viscous losses (black curve), contributions of the components of the viscous loss tensor (histogram) and the location of the minimum of the interpolation dependence (red marker). It follows from the given image that the dependence of viscous losses on the dome height is not monotonic and has a minimum at a height of 0.7 cm. An analysis of the contributions of radial-azimuthal gradients shows a discrepancy with the results obtained by varying the convergence index: in the case of channels with a height from 0.25 to 0.75, the losses during fluid rotation change insignificantly, but at the same time there is a decrease in the losses of the components of the main diagonal. The reasons for this effect are reflected in the spatial distributions of viscous losses and azimuthal velocities in Fig. 11.

Download (145KB)
12. Fig. 11. Distribution of total viscous losses (a, c, d) and azimuthal velocities (b, d, e) for channels with a dome height of H = 0.25, 0.75 and 1.5. Spatial distributions of the parameters of viscous losses and azimuthal velocity show a change in the flow with an increase in the dome height. An increase in the dome height leads to an increase in the scale of the vortex, which reduces the longitudinal gradients in region II. With a greater dome depth, an increase in the scale of the vortex leads to a decrease in the azimuthal velocity, which increases the longitudinal losses in region III. The optimal dome size leads to a uniform distribution of losses throughout the channel.

Download (506KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».