Evaluation of clinically significant miRNAs level by machine learning approaches utilizing total transcriptome data

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Analysis of the mechanisms underlying the occurrence and progression of cancer represents a key objective in contemporary clinical bioinformatics and molecular biology. Utilizing omics data, particularly transcriptomes, enables a detailed characterization of expression patterns and post-transcriptional regulation across various RNA types relative to the entire transcriptome. Here, we assembled a dataset comprising transcriptomic data from approximately 16.000 patients encompassing over 160 types of cancer. We employed state-of-the-art gradient boosting algorithms to discern intricate correlations in the expression levels of four clinically significant microRNAs, specifically hsa-mir-21, hsa-let-7a-1, hsa-let-7b, and hsa-let-7i, with the expression levels of the remaining 60.660 unique RNAs. Our analysis revealed a dependence of the expression levels of the studied microRNAs on the concentrations of several small nucleolar RNAs and regulatory long non-coding RNAs. Notably, the roles of these RNAs in the development of specific cancer types had been previously established through experimental evidence. Subsequent evaluation of the created database will facilitate the identification of a broader spectrum of overarching dependencies related to changes in the expression levels of various RNA classes in diverse cancers. In future it will make possible discovery of unique alterations specific to certain types of malignant transformations.

Full Text

Restricted Access

About the authors

Ya. V. Solovev

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: solovev@ibch.ru
Russian Federation, Moscow

A. S. Evpak

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: solovev@ibch.ru
Russian Federation, Moscow

A. A. Kudriaeva

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: solovev@ibch.ru
Russian Federation, Moscow

A. G. Gabibov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; M.V. Lomonosov Moscow State University

Email: solovev@ibch.ru

Academician of the RAS 

Russian Federation, Moscow; Moscow

A. A. Belogurov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Moscow State University of Medicine and Dentistry

Email: solovev@ibch.ru
Russian Federation, Moscow; Moscow

References

  1. Lorenzi L., et al. The RNA Atlas Expands the Catalog of Human Non-coding RNAs // Nat. Biotechnol. 2021. V. 39. № 11. P. 1453–1465. doi: 10.1038/s41587-021-00936-1
  2. Jens M., Rajewsky N. Competition between Target Sites of Regulators Shapes Post-transcriptional Gene Regulation // Nat. Rev. Genet. 2015. V. 16. № 2. P. 113–126. doi: 10.1038/nrg3853
  3. Lee Y.S., Dutta A. MicroRNAs in Cancer // Annu. Rev. Pathol. Mech. Dis. 2009. V. 4. № 1. P. 199–227. doi: 10.1146/annurev.pathol.4.110807.092222
  4. Lagos-Quintana M., Rauhut R., Lendeckel W., Tuschl T. Identification of Novel Genes Coding for Small Expressed RNAs // Science. 2001. V. 294. № 5543. P. 853–858. doi: 10.1126/science.1064921
  5. Ferraro A., et al. Epigenetic Regulation of miR-21 in Colorectal Cancer: ITGB4 as a Novel miR-21 Target and a Three-gene Network (miR-21-ITGΒ4-PDCD4) as Predictor of Metastatic Tumor Potential // Epigenetics. 2014. V. 9. № 1. P. 129–141. doi: 10.4161/epi.26842
  6. Kumarswamy R., Volkmann I., Thum T. Regulation and Function of miRNA-21 in Health and Disease // RNA Biol. 2011. V. 8. № 5. P. 706–713. doi: 10.4161/rna.8.5.16154
  7. Zhao Q., et al. miR-21 Promotes EGF-induced Pancreatic Cancer Cell Proliferation by Targeting Spry2 // Cell Death Dis. 2018. V. 9. № 12. P. 1157. doi: 10.1038/s41419-018-1182-9
  8. Yang Y., et al. Downregulation of microRNA-21 Expression Restrains Non-small Cell Lung Cancer Cell Proliferation and Migration through Upregulation of Programmed Cell Death 4 // Cancer Gene Ther. 2015. V. 22. № 1. P. 23–29. doi: 10.1038/cgt.2014.66
  9. Xu L., Wu Z., Chen Y., Zhu Q., Hamidi S., Navab R. MicroRNA-21 (miR-21) Regulates Cellular Proliferation, Invasion, Migration, and Apoptosis by Targeting PTEN, RECK and Bcl-2 in Lung Squamous Carcinoma, Gejiu City, China // PLoS ONE. 2014. V. 9. № 8. P. e103698. doi: 10.1371/journal.pone.0103698
  10. Martin Del Campo S.E., et al. MiR-21 Enhances Melanoma Invasiveness via Inhibition of Tissue Inhibitor of Metalloproteinases 3 Expression: In Vivo Effects of MiR-21 Inhibitor // PLOS ONE. 2015. V. 10. № 1. P. e0115919. doi: 10.1371/journal.pone.0115919
  11. Meng F., Henson R., Wehbe-Janek H., Ghoshal K., Jacob S. T., Patel T. MicroRNA-21 Regulates Expression of the PTEN Tumor Suppressor Gene in Human Hepatocellular Cancer // Gastroenterology. 2007. V. 133. № 2. P. 647–658. doi: 10.1053/j.gastro.2007.05.022
  12. Hatley M.E., et al. Modulation of K-Ras-Dependent Lung Tumorigenesis by MicroRNA-21 // Cancer Cell. 2010. V. 18. № 3. P. 282–293. doi: 10.1016/j.ccr.2010.08.013
  13. Lee H., Han S., Kwon C. S., Lee D. Biogenesis and Regulation of the let-7 miRNAs and Their Functional Implications // Protein Cell. 2016. V. 7. № 2. P. 100–113. doi: 10.1007/s13238-015-0212-y
  14. Balzeau J., Menezes M. R., Cao S., Hagan J. P. The LIN28/let-7 Pathway in Cancer // Front. Genet. 2017. V. 8. doi: 10.3389/fgene.2017.00031
  15. Yu F., et al. let-7 Regulates Self Renewal and Tumorigenicity of Breast Cancer Cells // Cell. 2007. V. 131. № 6. P. 1109–1123. doi: 10.1016/j.cell.2007.10.054
  16. Kallen A.N., et al. The Imprinted H19 LncRNA Antagonizes Let-7 MicroRNAs // Mol. Cell. 2013. V. 52. № 1. P. 101–112. doi: 10.1016/j.molcel.2013.08.027
  17. Cai W.-Y., et al. Wnt/β-catenin Pathway Represses let-7 microRNAs Expression via Transactivation of Lin28 to Augment Breast Cancer Stem Cell Expansion // J. Cell Sci. 2013. P. jcs.123810. doi: 10.1242/jcs.123810
  18. Liang R., et al. MiR-146a Promotes the Asymmetric Division and Inhibits the Self-renewal Ability of Breast Cancer Stem-like Cells via Indirect Upregulation of Let-7 // Cell Cycle. 2018. V. 17. № 12. P. 1445–1456. doi: 10.1080/15384101.2018.1489176
  19. Bao B., et al. Metformin Inhibits Cell Proliferation, Migration and Invasion by Attenuating CSC Function Mediated by Deregulating miRNAs in Pancreatic Cancer Cells // Cancer Prev. Res. (Phila. Pa.). 2012. V. 5. № 3. P. 355–364. doi: 10.1158/1940–6207.CAPR-11–0299
  20. Luo G., et al. Highly Lymphatic Metastatic Pancreatic Cancer Cells Possess Stem Cell-like Properties // Int. J. Oncol. 2013. V. 42. № 3. P. 979–984. doi: 10.3892/ijo.2013.1780
  21. Ahmad A., et al. Inhibition of Hedgehog Signaling Sensitizes NSCLC Cells to Standard Therapies through Modulation of EMT-regulating miRNAs // J Hematol Oncol. 2013. V. 6. № 1. P. 77. doi: 10.1186/1756-8722-6-77
  22. Alam M., Ahmad R., Rajabi H., Kufe D. MUC1-C Induces the LIN28B→LET-7→HMGA2 Axis to Regulate Self-Renewal in NSCLC // Mol. Cancer Res. 2015. V. 13. № 3. P. 449–460. doi: 10.1158/1541–7786.MCR-14-0363
  23. Guo L., et al. Stat3-coordinated Lin-28–let-7–HMGA2 and miR-200–ZEB1 Circuits Initiate and Maintain Oncostatin M-driven Epithelial–Mesenchymal Transition // Oncogene. 2013. V. 32. № 45. P. 5272–5282. doi: 10.1038/onc.2012.573
  24. Jiang R., et al. The Acquisition of Cancer Stem Cell-like Properties and Neoplastic Transformation of Human Keratinocytes Induced by Arsenite Involves Epigenetic Silencing of let-7c via Ras/NF-κB // Toxicol. Lett. 2014. V. 227. № 2. P. 91–98. doi: 10.1016/j.toxlet.2014.03.020
  25. Appari M., Babu K. R., Kaczorowski A., Gros W., Her I. Sulforaphane, Quercetin and Catechins Complement Each Other in Elimination of Advanced Pancreatic Cancer by miR-let-7 Induction and K-ras Inhibition // Int. J. Oncol. 2014. V. 45. № 4. P. 1391–1400. doi: 10.3892/ijo.2014.2539
  26. Ma X., et al. Lin28/let-7 Axis Regulates Aerobic Glycolysis and Cancer Progression via PDK1 // Nat. Commun. 2014. V. 5. № 1. P. 5212. doi: 10.1038/ncomms6212
  27. Zhang Y., et al. Lin28 Enhances De Novo Fatty Acid Synthesis to Promote Cancer Progression via SREBP‐1 // EMBO Rep. 2019. V. 20. № 10. P. e48115. doi: 10.15252/embr.201948115
  28. Zhou J., et al. Inhibition of LIN28B Impairs Leukemia Cell Growth and Metabolism in Acute Myeloid Leukemia // J. Hematol. Oncol.J Hematol Oncol. 2017. V. 10. № 1. P. 138. doi: 10.1186/s13045-017-0507-y
  29. Ke G., et al. LightGBM: A Highly Efficient Gradient Boosting Decision Tree // Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17. Red Hook, NY, USA: Curran Associates Inc., 2017. P. 3149–3157.
  30. Pedregosa F., et al. Scikit-learn: Machine Learning in Python // J. Mach. Learn. Res. 2011. V. 12. P. 2825–2830.
  31. Harris C.R., et al. Array Programming with NumPy // Nature. 2020. V. 585. № 7825. P. 357–362. doi: 10.1038/s41586-020-2649-2
  32. Plotly Technologies Inc. Collaborative data science. Montréal, QC, 2015. https://plot.ly. Ссылка активна на 10 июля 2024 г.
  33. Yang Y., et al. A Comprehensive Pan-cancer Analysis on the Immunological Role and Prognostic Value of TYMP in Human Cancers // Transl. Cancer Res. 2022. V. 11. № 9. P. 3187–3208. doi: 10.21037/tcr-22-502
  34. Blum A.E., et al. RNA Sequencing Identifies Transcriptionally Viable Gene Fusions in Esophageal Adenocarcinomas // Cancer Res. 2016. V. 76. № 19. P. 5628–5633. doi: 10.1158/0008-5472.CAN-16–0979
  35. Vaccaro M.I., Mitchell F., Rivera F., Gonzalez C. D. Protein Expression in Exocrine Pancreatic Diseases. Focus on VMP1 Mediated Autophagy // Advances in Protein Chemistry and Structural Biology. V. 132. Elsevier, 2022. P. 175–197. doi: 10.1016/bs.apcsb.2022.07.001
  36. Fang L., et al. PLAU Directs Conversion of Fibroblasts to Inflammatory Cancer-associated Fibroblasts, Promoting Esophageal Squamous Cell Carcinoma Progression via uPAR/Akt/NF-κB/IL8 Pathway // Cell Death Discov. 2021. V. 7. № 1. P. 32. doi: 10.1038/s41420–021–00410–6
  37. Roberts A.G.K., Catchpoole D.R., Kennedy P.J. Identification of Differentially Distributed Gene Expression and Distinct Sets of Cancer-related Genes Identified by Changes in Mean and Variability // NAR Genomics Bioinforma. 2022. V. 4. № 1. P. lqab124. doi: 10.1093/nargab/lqab124
  38. Fancello L., Kampen K.R., Hofman I.J.F., Verbeeck J., Keersmaecker K. D. The Ribosomal Protein Gene RPL5 is a Haploinsufficient Tumor Suppressor in Multiple Cancer Types // Oncotarget. 2017. V. 8. № 9. P. 14462–14478. doi: 10.18632/oncotarget.14895
  39. Malgundkar S. H., et al. Identification and Validation of a Novel Long Non-coding RNA (LINC01465) in Ovarian Cancer // Hum. Cell. 2022. V. 36. № 2. P. 762–774. doi: 10.1007/s13577-022-00842-x
  40. Ji Z., et al. C–Myc-activated Long Non-coding RNA LINC01050 Promotes Gastric Cancer Growth and Metastasis by Sponging miR-7161–3p to Regulate SPZ1 Expression // J. Exp. Clin. Cancer Res. 2021. V. 40. № 1. P. 351. doi: 10.1186/s13046-021-02155-7
  41. Gao L., et al. Genome‐wide Small Nucleolar RNA Expression Analysis of Lung Cancer by Next‐generation Deep Sequencing // Int. J. Cancer. 2015. V. 136. № 6. doi: 10.1002/ijc.29169
  42. Zhang H., et al. FBXO7, a Tumor Suppressor in Endometrial Carcinoma, Suppresses INF2-associated Mitochondrial Division // Cell Death Dis. 2023. V. 14. № 6. P. 368. doi: 10.1038/s41419-023-05891-0
  43. Okada Y., et al. Homeodomain Proteins MEIS1 and PBXs Regulate the Lineage-specific Transcription of the Platelet Factor 4 Gene // Blood. 2003. V. 101. № 12. P. 4748–4756. doi: 10.1182/blood-2002-02-0380
  44. Ali A., et al. Ferritin Heavy Chain (FTH1) Exerts Significant Antigrowth Effects in Breast Cancer Cells by Inhibiting the Expression of c‐MYC // FEBS Open Bio. 2021. V. 11. № 11. P. 3101–3114. doi: 10.1002/2211-5463.13303
  45. Meng L., Zhang Q., Huang X. Abnormal 5-methylcytosine lncRNA Methylome is Involved in Human High-grade Serous Ovarian Cancer // Am. J. Transl. Res. 2021. V. 13. № 12. P. 13625–13639.
  46. Lu L., et al. The Long Non-Coding RNA RHPN1-AS1 Promotes Uveal Melanoma Progression // Int. J. Mol. Sci. 2017. V. 18. № 1. P. 226. doi: 10.3390/ijms18010226
  47. Wang J., et al. Long Non-coding RNA RHPN1-AS1 Promotes Tumorigenesis and Metastasis of Ovarian Cancer by Acting as a ceRNA against miR-596 and Upregulating LETM1 // Aging. 2020. V. 12. № 5. P. 4558–4572. doi: 10.18632/aging.102911
  48. Qian Y., Shi L., Luo Z. Long Non-coding RNAs in Cancer: Implications for Diagnosis, Prognosis, and Therapy // Front. Med. 2020. V. 7. P. 612393. doi: 10.3389/fmed.2020.612393
  49. Chen X., Sun Z. Novel lincRNA Discovery and Tissue-Specific Gene Expression across 30 Normal Human Tissues // Genes. 2021. V. 12. № 5. P. 614. doi: 10.3390/genes12050614

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Distribution of the percentage error value relative to the actual values ​​for test data sets.

Download (71KB)
3. Fig. 2. Analysis of the quality of machine learning performance on training and test datasets (points 1, 3, 5, 7) and analysis of the contribution of key RNAs to the performance of each model (points 2, 4, 6, 8).

Download (731KB)
4. Fig. 3. The ratio of 10 RNAs with the highest absolute values ​​of Pearson correlation coefficients with target microRNAs.

Download (378KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies