Hydrogels based on recombinant spidroin stimulate proliferation and migration of human cornea cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This article presents the results of studying the impact of recombinant spidroin hydrogel on posterior epithelial cells and human corneal keratocytes in an in vitro experiment. The World Health Organization in its studies has established a high prevalence of corneal injuries among the population of developing countries. In recent years, various technologies have been proposed to restore the damaged surface of the cornea. The use of biodegradable silk-based materials, such as spidroins is one of the main parts of scientific research of corneal regeneration. Spidroinsare well known for their optimal balance of strength and elasticity, which, given their biological compatibility, non-immunogenicity and biodegradability, allows them to be used as a biomaterial for tissue engineering and regenerative medicine. In this reason a detailed assessment of the cytotoxicity of hydrogels based on recombinant rS2/12-RGDS spidroinon the epithelial cells and keratocytes was performed here, taking into attention possible changes of the phenotype and migratory activity of these cells. This study demonstrates the promise and therapeutic potential of hydrogels based on recombinant spidroin.

Full Text

Restricted Access

About the authors

O. I. Agapova

Academician V.I.Shumakov Federal Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation

Email: igor_agapov@gmail.com
Russian Federation, Moscow

D. S. Ostrovsky

S. Fyodorov Eye Microsurgery Complex Federal State Institution of the Ministry of Healthcare of the Russian Federation

Email: igor_agapov@gmail.com
Russian Federation, Moscow

M. Kh. Khubetsova

S. Fyodorov Eye Microsurgery Complex Federal State Institution of the Ministry of Healthcare of the Russian Federation

Email: igor_agapov@gmail.com
Russian Federation, Moscow

T. Z. Kerimov

S. Fyodorov Eye Microsurgery Complex Federal State Institution of the Ministry of Healthcare of the Russian Federation; A.I. Evdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of the Russian Federation

Email: igor_agapov@gmail.com
Russian Federation, Moscow; Moscow

S. A. Borzenok

S. Fyodorov Eye Microsurgery Complex Federal State Institution of the Ministry of Healthcare of the Russian Federation; A.I. Evdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of the Russian Federation

Email: igor_agapov@gmail.com
Russian Federation, Moscow; Moscow

V. G. Bogush

The National Research Centre “Kurchatov Institute”

Email: igor_agapov@gmail.com
Russian Federation, Moscow

L. I. Davydova

The National Research Centre “Kurchatov Institute”

Email: igor_agapov@gmail.com
Russian Federation, Moscow

S. E. Cheperegin

The National Research Centre “Kurchatov Institute”

Email: igor_agapov@gmail.com
Russian Federation, Moscow

A. E. Efimov

Academician V.I.Shumakov Federal Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation

Email: igor_agapov@gmail.com
Russian Federation, Moscow

I. I. Agapov

Academician V.I.Shumakov Federal Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation

Author for correspondence.
Email: igor_agapov@gmail.com
Russian Federation, Moscow

V. G. Debabov

The National Research Centre “Kurchatov Institute”

Email: igor_agapov@gmail.com

Academician

Russian Federation, Moscow

References

  1. Whitcher J.P., Srinivasan M., Upadhyay M.P. Corneal blindness: a global perspective // Bull World Health Organ. 2001. V. 79(3). P. 214–221.
  2. Gain P., Jullienne R., He Z., et al. Global Survey of Corneal Transplantation and Eye Banking // JAMA Ophthalmol. 2016. V. 134 (2). P. 167–173.
  3. Jeng B. H., Ahmad S. In Pursuit of the Elimination of Corneal Blindness: Is Establishing Eye Banks and Training Surgeons Enough? // Ophthalmology. 2021. V. 128(6). P. 813–815.
  4. Mahdavi S.S., Abdekhodaie M.J., Mashayekhan S., et al. Bioengineering Approaches for Corneal Regenerative Medicine // Tissue Eng Regen Med. 2020. V. 17 (5). P. 567–593.
  5. El-Sherbiny I.M., Yacoub M.H. Hydrogel scaffolds for tissue engineering: Progress and challenges // Glob Cardiol Sci Pract. 2013. V. 2013 (3). P. 316–342.
  6. Jameson J.F., Pacheco M.O., Nguyen H.H., et al. Recent Advances in Natural Materials for Corneal Tissue Engineering // Bioengineering (Basel). 2021. V. 8(11) P. 161.
  7. Han Y., Li C., Cai Q., et al. Studies on bacterial cellulose/poly(vinyl alcohol) hydrogel composites as tissue-engineered corneal stroma // Biomed Mater. 2020. V. 15(3). P. 035022.
  8. Kong B., Chen Y., Liu R., et al. Fiber reinforced GelMA hydrogel to induce the regeneration of corneal stroma // Nat Commun. 2020. V. 11 (1). P. 1435.
  9. Bowen C.H., Dai B., Sargent C.J., et al. Recombinant Spidroins Fully Replicate Primary Mechanical Properties of Natural Spider Silk // Biomacromolecules. 2018. V. 19 (9). P. 3853~3860.
  10. Zhang Q., Li M., Hu W., et al. Spidroin-Based Biomaterials in Tissue Engineering: General Approaches and Potential Stem Cell Therapies // Stem Cells Int. 2021. V. 2021. P. 7141550.
  11. Ramezaniaghdam M., Nahdi N.D., Reski R. Recombinant Spider Silk: Promises and Bottlenecks // Front Bioeng. Biotechnol. 2022. V. 10. P. 835637.
  12. Teplenin A., Krasheninnikova A., Agladze N., et al. Functional analysis of the engineered cardiac tissue grown on recombinant spidroin fiber meshes // PLoS One. 2015. V. 10 (3). P. e0121155,
  13. Агапов И.И., Пустовалова О.Л., Мойсенович М.М. и др. Трехмерный матрикс из рекомбинантного белка паутины для тканевой инженерии // Доклады Академии наук. 2009. Т. 426. № 1. С. 115–118.
  14. Агапова О.И., Ефимов А.Е., Мойсенович М.М. и др. Сравнительный анализ трехмерной наноструктуры пористых биодеградируемых матриксов из рекомбинантного спидроина и фиброина шелка для регенеративной медицины // Вестник трансплантологии и искусственных органов. 2015. Т. 17 (2). С. 37–44.
  15. Jansson R., Thatikonda N., Lindberg D., et al. Recombinant spider silk genetically functionalized with affinity domains // Biomacromolecules. 2014. V. 15 (5). P. 1696–1706.
  16. Bogush V.G., Sokolova O.S., Davydova L.I., et al. A novel model system for design of biomaterials, based on recombinant analogs of spider silk protein // J Neuroimmune Pharmacol. 2009. V. 4 (1). P. 17–27.
  17. Hirano Y., Okuno M., Hayashi T., et al. Cell-attachment activities of surface immobilized oligopeptides RGD, RGDS, RGDV, RGDT, and YIGSR toward five cell lines // J. Biomater. Sci. Polym. Ed. 1993. V. 4. P. 235–243.
  18. Kumar V.B., Tiwari O.S., Finkelstein-Zuta G., et al. Design of Functional RGD Peptide-Based Biomaterials for Tissue Engineering // Pharmaceutics. 2023. V. 15. P. 345.
  19. Revkova V., Sidoruk K., Kalsin V., et al. Spidroin silk fibers with bioactive motifs of extracellular proteins for neural tissue engineering // ACS Omega. 2021. V. 6. P. 15264–15273.
  20. Nosenko M.A., Moysenovich A.M., Zvartsev R.V., et al. Novel Biodegradable Polymeric Microparticles Facilitate Scarless Wound Healing by Promoting Re-epithelialization and Inhibiting Fibrosis // Frontiers in Immunology. 2018. V. 9. Р. 2851.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Results of the scratch test of epithelial cells and keratocytes (*;** – statistically significant differences compared to the control group 4, p < 0.05; ns – differences between the experimental groups and the control are not statistically significant, p > 0.05) .

Download (121KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies