Modular nanotransporters capable of cause intracellular degradation of the N-protein of the SARS-CoV-2 virus in A549 cells with temporary expression of this protein fused with the fluorescent protein mRuby3

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Modular nanotransporters (MNTs) have been created containing an antibody-like molecule, monobody, to the N-protein of the SARS-CoV-2 virus, as well as an amino acid sequence that attracts the E3 ligase Keap1 (E3BP). This MNT also included a site for cleavage of the E3BP monobody from the MNT in acidic endocytic compartments. It was shown that this cleavage by the endosomal protease cathepsin B leads to a 2.7-fold increase in the affinity of the E3BP monobody for the N-protein. Using A549 cells with transient expression of the N-protein fused with the fluorescent protein mRuby3, it was shown that incubation with MNT leads to a significant decrease in mRuby3 fluorescence. It is assumed that the developed MNTs can serve as the basis for the creation of new antiviral drugs against the SARS-CoV-2 virus.

Full Text

Restricted Access

About the authors

Y. V. Khramtsov

Institute of Gene Biology, RAS

Author for correspondence.
Email: alsobolev@yandex.ru
Russian Federation, Moscow

A. V. Ulasov

Institute of Gene Biology, RAS

Email: alsobolev@yandex.ru
Russian Federation, Moscow

T. N. Lupanova

Institute of Gene Biology, RAS

Email: alsobolev@yandex.ru
Russian Federation, Moscow

G. P. Georgiev

Institute of Gene Biology, RAS

Email: alsobolev@yandex.ru

Academician

Russian Federation, Moscow

A. S. Sobolev

Institute of Gene Biology, RAS; Lomonosov Moscow State University

Email: alsobolev@yandex.ru

Corresponding 

Russian Federation, Moscow; Moscow

References

  1. Clercq E.D., Li G. // Clin Microbiol Rev. 2016. V. 29. P. 695–747.
  2. Gebauer M., Skerra A. // Annu Rev Pharmacol Toxicol. 2020. V. 60. P. 391-415.
  3. Shipunova V.O., Deyev S.M. // Acta Naturae. 2022. V. 14. № 1(52). P. 54–72.
  4. Tolmachev V.M., Chernov V.I., Deyev S.M. // Russ Chem Rev. 2022. V. 91. № 3. RCR5034
  5. Surjit M., Lal S.K. // Infect Genet Evol. 2008. V. 8. P. 397–405.
  6. Wu C., Zheng M. // Preprints. 2020. 2020020247.
  7. Prajapat M., Sarma P., Shekhar N., et al. // Indian J Pharmacol. 2020. V. 52. P. 56.
  8. Du Y., Zhang T., Meng X., et al. // Preprints. 2020. doi: 10.21203/rs.3.rs-25828/v1.
  9. Khramtsov Y.V., Ulasov A.V., Lupanova T.N., et al. // Dokl Biochem Biophys. 2023. V. 510. P. 87–90.
  10. Lu M., Liu T., Jiao Q. et al. // Eur J Med Chem. 2018. V. 146. P. 251–259.
  11. Fulcher L.J., Hutchinson L.D., Macartney T.J., et al. // Open biology. 2017. V. 7. 170066.
  12. Slastnikova T.A., Rosenkranz A.A., Khramtsov Y.V., et al. // Drug Des Devel Ther. 2017. V. 11. P. 1315–1334.
  13. Khramtsov Y.V., Ulasov A.V., Lupanova T.N., et al. // Dokl Biochem Biophys. 2022. V. 506.
  14. Kern H.B., Srinivasan S., Convertine A.J., et al. // Mol Pharmaceutics. 2017. V. 14(5). P. 1450–1459.
  15. Wang S., Dai T., Qin Z., et al. // Nat. Cell Biol. 2021. V. 23. P. 718–732.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of the relative fluorescence intensity (the fluorescence intensity before the start of thermophoresis is taken as 100%) 20 s after the start of thermophoresis on the concentration of MNT1 or cleaved MNT1 at a constant concentration of N-protein labeled with AF488 (5 nM). The standard error of relative fluorescence intensity determination is indicated (14–17 replicates).

Download (61KB)
3. Fig. 2. Relative fluorescence of A549 cells (the fluorescence of cells to which MNT was not added was taken as 100%) when they were incubated for various times with 500 nM MNT1 or 500 nM MNT0. Mean values with corresponding standard error are shown (n = 3–9).

Download (47KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies