INFLUENCE OF SEED TREATMENT WITH SALICYLIC ACID ON THE CARBONIC ANHYDRASE ACTIVITY, PHOTOSYNTHESIS RATE, STOMATAL CONDUCTANCE AND PIGMENTS CONTENT IN WHEAT LEAVES AT ZINC EXCESS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We studied the effect of seed treatment with salicylic acid (SA) on the carbonic anhydrase (CA) activity, photosynthesis rate, stomatal conductance and pigments content in wheat leaves at optimal zinc content (2 μM) or zinc excess (1500 μM). It was shown for the first time that at an optimal zinc content seed treatment with SA leads to an increase in CA activity and stomatal conductance compared to untreated plants without affecting the photosynthesis rate. At an zinc excess seed treatment with SA increased the decrease in CA activity, but the photosynthesis rate was higher than in untreated plants, apparently due to an increase in the chlorophylls and carotenoids content and stomatal conductivity. It is concluded that SA along with other non-hormonal factors and hormones, is involved in the protective and adaptive reactions of wheat plants to an zinc excess in the environment.

About the authors

A. A. Ignatenko

Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences

Author for correspondence.
Email: angelina911@ya.ru
Russian Federation, Petrozavodsk

I. A. Nilova

Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences

Email: angelina911@ya.ru
Russian Federation, Petrozavodsk

E. S. Kholoptseva

Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences

Email: angelina911@ya.ru
Russian Federation, Petrozavodsk

A. F. Titov

Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences

Email: angelina911@ya.ru
Russian Federation, Petrozavodsk

N. M. Kaznina

Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences

Email: angelina911@ya.ru
Russian Federation, Petrozavodsk

References

  1. Колупаев Ю.Е., Карпец Ю.В. Салициловая кислота и устойчивость растений к абиотическим стрессорам // Вісник Харківського національного аграрного університету ім. В.В. Докучаєв. Серия Биология. 2009. № 2. С. 19–39.
  2. Kaur G., Tak Y., Asthir B. Salicylic acid: a key signal molecule ameliorating plant stresses // Cereal Res. Commun. 2022. V. 50. P. 617–626.
  3. Sharma A., Singh G.P.S., Araniti F., et al. The role of salicylic acid in plants exposed to heavy metals // Molecules. 2020. V. 25. P. 540.
  4. Singh S., Parihar P., Singh R., et al. Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics // Front. Plant Sci. 2016. V. 6. P. 1143.
  5. Moussa H., El-Gamal S.M. Effect of salicylic acid pretreatment on cadmium toxicity in wheat // Biol. Plant. 2010. V. 54. P. 315–320.
  6. Yotsova E.K., Dobrikova A.G., Stefanov M.A., et al. Improvement of the rice photosynthetic apparatus defence under cadmium stress modulated by salicylic acid supply to roots // Theor. Exp. Plant Physiol. 2018. V. 30. P. 57–70.
  7. Safari F., Akramian M., Salehi-Arjmand H., et al. Physiological and molecular mechanisms underlying salicylic acid-mitigated mercury toxicity in lemon balm (Melissa officinalis L.) // Ecotoxicol. Environ. Saf. 2019. V. 183. P. 109542.
  8. Quaglia M., Troni E., D’Amato R., et al. Effect of zinc imbalance and salicylic acid co-supply on Arabidopsis response to fungal pathogens with different lifestyles // Plant Biology. 2021. V. 4. P. 30–40.
  9. Руденко Н.Н., Игнатова Л.К., Федорчук Т.П., и др. Карбоангидразы фотосинтезирующих клеток высших растений. Обзор // Биохимия. 2015. Т. 80. С. 798–813.
  10. Medina-Puche L., Castelló M.J., Canet J.V., et al. β-carbonic anhydrases play a role in salicylic acid perception in Arabidopsis // PLoS ONE. 2017. V. 12. P. e0181820.
  11. Polishchuk O.V. Stress-related changes in the expression and activity of plant carbonic anhydrases // Planta. 2021. V. 253. P. 58.
  12. Slaymaker D.H., Navarre D.A., Clark D., et al. The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response // PNAS. 2002. V. 99. P. 11640–11645.
  13. Hayat Q., Hayat S., Alyemeni M.N., et al. Plant physiology salicylic acid mediated changes in growth, photosynthesis, nitrogen metabolism and antioxidant defense systemin Cicer arietinum L. // Plant Soil Environ. 2012. V. 58. P. 417–423.
  14. Ahmad B., Jaleel H., Sadiq Y., et al. Response of exogenous salicylic acid on cadmium induced photosynthetic damage, antioxidant metabolism and essential oil production in peppermint // Plant Growth Regul. 2018. V. 86. P. 273–286.
  15. Bingöl N.A., Akin B., Kocaçalişkan İ., et al. Effect of zinc on phytoremediation potential and carbonic anhydrase and polyphenoloxidase activities of Lythrum salicaria L. // Turk. J. Bot. 2021. V. 45. P. 553–562.
  16. Bandyopadhyay T., Mehr P., Hairat S., et al. Morpho-physiological and transcriptome profiling reveal novel zinc deficiency-responsive genes in rice // Funct. Integr. Genomics. 2017. V. 17. P. 565–581.
  17. Fariduddin Q., Hayat S., Ahmad A. Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea // Photosynthetica. 2003. V. 41. P. 281–284.
  18. Hayat S., Hasan S.A., Fariduddin Q., et al. Growth of tomato (Lycopersicon esculentum) in response to salicylic acid under water stress // J. Plant Interact. 2008. V. 3. P. 297–304.
  19. Zlobin I.E., Kartashov A.V., Kuznetsov Vl.V. Some plant enzymes are highly sensitive to inhibition by zinc ions // Russ. J. Plant Physiol. 2019. V. 66. P. 591–596.
  20. Kolbe A.R., Brutnell T.P., Cousins A.B., et al. Carbonic anhydrase mutants in Zea mays have altered stomatal responses to environmental signals // Plant Physiol. 2018. V. 177. P. 980–989.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (286KB)

Copyright (c) 2023 А.А. Игнатенко, И.А. Нилова, Е.С. Холопцева, А.Ф. Титов, Н.М. Казнина

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies