GROWTH INDUCTION OF SOLID EHRLICH ASCITIC CARCINOMA IN MICE AFTER PROTON IRRADIATION OF TUMOR CELLS EX VIVO

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study presents data on the growth rate and frequency of induction of the solid form of Ehrlich’s ascitic carcinoma (EAC) in mice in the short and long term after inoculation of ascitic cells irradiated ex vivo with a proton beam in the dose range of 30–150 Gy. It was shown that the growth rate of solid tumors after inoculation of irradiated cells ex vivo coincided with the growth of tumors in the control group. The frequency of tumor induction in mice after inoculation EAC cells irradiated at a dose of 30 Gy was 80%, 60 Gy – 60%, 90 Gy – 25%, 120 Gy – 10%, and with irradiation at a dose of 150 Gy, no tumors appeared during the entire observation period. Thus, we were able to determine the dose of proton radiation required to eliminate tumor cells and/or signaling factors that can lead to the induction of tumor growth of EAC in mice.

About the authors

V. E. Balakin

Branch “Physical-Technical Center” of P.N. Lebedev Physical Institute of the Russian Academy of Sciences

Email: strelnikova.ns@lebedev.ru
Russian Federation, Protvino

O. M. Rozanova

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: strelnikova.ns@lebedev.ru
Russian Federation, Pushchino

E. N. Smirnova

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: strelnikova.ns@lebedev.ru
Russian Federation, Pushchino

T. A. Belyakova

Branch “Physical-Technical Center” of P.N. Lebedev Physical Institute of the Russian Academy of Sciences

Email: strelnikova.ns@lebedev.ru
Russian Federation, Protvino

N. S. Strelnikova

Branch “Physical-Technical Center” of P.N. Lebedev Physical Institute of the Russian Academy of Sciences

Author for correspondence.
Email: strelnikova.ns@lebedev.ru
Russian Federation, Protvino

A. V. Smirnov

Branch “Physical-Technical Center” of P.N. Lebedev Physical Institute of the Russian Academy of Sciences

Email: strelnikova.ns@lebedev.ru
Russian Federation, Protvino

A. E. Shemyakov

Branch “Physical-Technical Center” of P.N. Lebedev Physical Institute of the Russian Academy of Sciences

Email: strelnikova.ns@lebedev.ru
Russian Federation, Protvino

References

  1. Paganetti H., Beltran C., Both S., et al. Roadmap: proton therapy physics and biology // Phys Med Biol. 2021. V. 66 05RM01.
  2. Balakin V.E., Rozanova O.M., Smirnova E.N., et al. The effect of low and medium doses of pencil scanning proton beam on the blood-forming organs during total irradiation of mice // Dokl Biochem Biophys. 2020. V. 494. № 1. P. 231–234.
  3. Balakin V.E., Rozanova O.M., Smirnova E.N., et al. Assessment of the relative biological efficiency of pencil beam scanning of protons in mice in vivo // Dokl Biochem Biophys. 2021. V. 499. № 1. P. 215–219.
  4. Hirayama R., Uzawa A., Obara M., et al. Determination of the relative biological effectiveness and oxygen enhancement ratio for micronuclei formation using high-LET radiation in solid tumor cells: An in vitro and in vivo study // Mutat Res Genet Toxicol Environ Mutagen. 2015. V. 793. P. 41–47.
  5. Warren J.L., Noone A.M., Stevens J., et al. The utility of pathology reports to identify persons with cancer recurrence // Med Care. 2022. V. 60. № 1. P. 44–49.
  6. Balakin V.E., Belyakova T.A., Rozanova O.M., et al. Study of early and remote effects of hypofractionated proton irradiation in a model of solid Ehrlich ascites carcinoma in mice // Journal biomed. 2021. V. 17. № S3. P. 127–132.
  7. Yin W., Wang J., Jiang L., Kang J. Cancer and stem cells // Exp Biol Med (Maywood). 2021. V. 246. № 16. P. 1791–1801.
  8. Chang J.C. Cancer stem cell role in tumor growth, recurrence, metastasis, and treatment resistance // Medicine (Baltimore). 2016. V. 95. № 1. P. 20–25.
  9. Smith J.A., van den Broek F.A.R., Martorell J.C., et al. Principles and practice in ethical review of animal experiments across Europe: summary of the report of the FELASA working group on ethical evaluation of animal experiments // Lab Anim. 2007. V. 41. № 2. P. 143–160.
  10. Rozanova O.M., Smirnova E.N., Belyakova T.A., et al. Early and remote sequence effect of neutron and proton irradiation on the tumor response of solid Ehrlich carcinoma and skin reactions in mice // Biophysics. 2022. V. 67. № 5. P. 991–1001.
  11. Бекетов Е.Е., Исаева Е.В., Наседкина Н.В., и др. Биологическая эффективность сканирующего пучка протонов терапевтического комплекса “Прометеус” МРНЦ им. А.Ф. Цыба в исследованиях на культуре клеток мышиной меланомы B-16 // Вопросы онкологии. 2018. Т. 64. № 5. С. 678–682.
  12. Zavestovskaya I.N., Shemyakov A.E., Pryanichnikov A.A., et al. Expansion of the experimental facility and development of a technique for irradiating cell cultures, based on the proton therapy complex Prometheus // Bulletin of the Lebedev Physics Institute. 2022. V. 49. № 5. P. 145–150.
  13. Lee K.B., Lee J.S., Park J.W., et al. Low energy proton beam induces tumor cell apoptosis through reactive oxygen species and activation of caspases // Exp Mol Med. 2008. V. 40. № 1 P. 118–129.
  14. Yang L., Shi P., Zhao G., et al. Targeting cancer stem cell pathways for cancer therapy // Signal Transduction and Targeted Therapy. 2020. V. 5. № 1. P. 8.
  15. Замулаева И.А. Радиорезистентность популяции опухолевых стволовых клеток: механизмы, способы преодоления и клиническое значение. В сб.: Международной конференции “Актуальные проблемы радиационной биологии. К 60-летию создания Научного совета РАН по радиобиологии”; 25–27 октября 2022. Дубна; 2022. Доступно по http://radbio.jinr.ru/index.php/conference2022. Ссылка активна на 20 февраля 2023.
  16. Замулаева И.А., Матчук О.Н., Селиванова Е.И., и др. Увеличение количества опухолевых стволовых клеток под воздействием редкоионизирующего излучения // Радиационная биология. Радиоэкология. 2014. Т. 54. № 3. С. 256–264.
  17. Narang H., Kumar A., Bhat N., et al. Effect of proton and gamma irradiation on human lung carcinoma cells: Gene expression, cell cycle, cell death, epithelial–mesenchymal transition and cancer-stem cell trait as biological end points // Mutat Res. 2015. V. 780. P. 35–46.
  18. Quintana E., Shackleton M., Sabel M.S., et al. Efficient tumor formation by single human melanoma cells // Nature. 2008. V. 456. № 7222. P. 593–598.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (151KB)
3.

Download (112KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies