Biomarkers of Carotid Stenosis
- Authors: Sсherbak S.G.1,2, Kamilova T.A.2, Lebedeva S.V.2, Vologzhanin D.A.2, Golota A.S.2, Makarenko S.V.1,2, Apalko S.V.2
-
Affiliations:
- Saint Petersburg State University
- Saint Petersburg City Hospital No 40
- Issue: Vol 3, No 1 (2021)
- Pages: 104-130
- Section: REVIEWS
- URL: https://journals.rcsi.science/2658-6843/article/view/64286
- DOI: https://doi.org/10.36425/rehab64286
- ID: 64286
Cite item
Full Text
Abstract
Early recognition of rupture-prone atherosclerotic lesions in patients with high-graded carotid stenosis is an important clinical problem for preventing ischemic stroke. Various pathophysiological mechanisms are responsible for the progression and instability of plaques, such as changes in lipid composition, infiltration by immunoinflammatory cells and degradation of the extracellular matrix of the vascular wall by matrix metalloproteinases, enhanced inflammatory response and plaque neovascularization. These features are the main cause of plaque rupture and, as a consequence, neurologic symptoms. Therefore, matrix metalloproteinases and inflammatory factors can serve as possible markers for patients with severe unstable stenosis of carotid arteries. Due to the heterogeneity of atherosclerotic lesions, only one biomarker is not enough to reliably predict the development of a stroke. The use of a combination of biomarkers is better correlated with clinical data and, therefore, exceeds the analysis of individual factors. To increase the overall sensitivity and specificity and more reliable diagnosis of stroke in patients with symptomatic and asymptomatic carotid stenosis, the biomarker panel should include independent biomarkers. Further preclinical experiments and clinical trials are needed to assess the significance and precise definition of the threshold levels of such biomarkers before they can be used in clinical practice.
Full Text
##article.viewOnOriginalSite##About the authors
Sergey G. Sсherbak
Saint Petersburg State University; Saint Petersburg City Hospital No 40
Author for correspondence.
Email: b40@zdrav.spb.ru
ORCID iD: 0000-0001-5047-2792
SPIN-code: 1537-9822
Dr. Sci. (Med.), Professor
Russian Federation, 7/9 Universitetskaya Embankment, 199034, Saint Petersburg; Saint PetersburgTatyana A. Kamilova
Saint Petersburg City Hospital No 40
Email: kamilovaspb@mail.ru
ORCID iD: 0000-0001-6360-132X
SPIN-code: 2922-4404
Cand. Sci. (Biol.)
Russian Federation, Saint PetersburgSvetlana V. Lebedeva
Saint Petersburg City Hospital No 40
Email: dr.lebedeva@gmail.com
MD
Russian Federation, Saint PetersburgDmitry A. Vologzhanin
Saint Petersburg City Hospital No 40
Email: volog@bk.ru
ORCID iD: 0000-0002-1176-794X
SPIN-code: 7922-7302
Dr. Sci. (Med.)
Russian Federation, Saint PetersburgAlexander S. Golota
Saint Petersburg City Hospital No 40
Email: golotaa@yahoo.com
ORCID iD: 0000-0002-5632-3963
SPIN-code: 7234-7870
Cand. Sci. (Med.), Associate Professor
Russian Federation, Saint PetersburgStanislav V. Makarenko
Saint Petersburg State University; Saint Petersburg City Hospital No 40
Email: st.makarenko@gmail.com
ORCID iD: 0000-0002-1595-6668
SPIN-code: 8114-3984
MD
Russian Federation, 7/9 Universitetskaya Embankment, 199034, Saint Petersburg; Saint PetersburgSvetlana V. Apalko
Saint Petersburg City Hospital No 40
Email: svetlana.apalko@gmail.com
ORCID iD: 0000-0002-3853-4185
SPIN-code: 7053-2507
Cand. Sci. (Biol.)
Russian Federation, Saint PetersburgReferences
- Marino F, Tozzi M, Schembri L, et al. Production of IL-8, VEGF and elastase by circulating and intraplaque neutrophils in patients with carotid atherosclerosis. PLoS One. 2015;10(4):e0124565. doi: 10.1371/journal.pone.0124565
- Rao VH, Kansal V, Stoupa S, Agrawal DK. MMP-1 and MMP-9 regulate epidermal growth factor-dependent collagen loss in human carotid plaque smooth muscle cells. Physiol Rep. 2014;2(2):e00224. doi: 10.1002/phy2.224
- Ammirati E, Moroni F, Norata GD, et al. Markers of inflammation associated with plaque progression and instability in patients with carotid atherosclerosis. Mediators Inflamm. 2015;2015:718329. doi: 10.1155/2015/718329
- Bazan HA, Hatfield SA, Brug A, et al. Carotid plaque rupture is accompanied by an increase in the ratio of serum circR-284 to miR-221 levels. Circ Cardiovasc Genet. 2017;10(4):pii: e001720. doi: 10.1161/CIRCGENETICS.117.001720
- Chowdhury M, Ghosh J, Slevin M, et al. A comparative study of carotid atherosclerotic plaque microvessel density and angiogenic growth factor expression in symptomatic versus asymptomatic patients. Eur J Vasc Endovasc Surg. 2010;39(4):388–395. doi: 10.1016/j.ejvs.2009.12.012
- Bonaventura A, Mach F, Roth A, et al. Intraplaque expression of C-reactive protein predicts cardiovascular events in patients with severe atherosclerotic carotid artery stenosis. Mediators Inflamm. 2016;2016:9153673. doi: 10.1155/2016/9153673
- Jaroslav P, Christian R, Stefan O, et al. Evaluation of serum biomarkers for patients at increased risk of stroke. Int J Vasc Med. 2012;2012:906954. doi: 10.1155/2012/906954
- Sun R, Wang L, Guan C, et al. Carotid atherosclerotic plaque features in patients with acute ischemicstroke. World Neurosurg. 2018;112:e223–e228. doi: 10.1016/j.wneu.2018.01.026
- Alonso A, Artemis D, Hennerici MG. Molecular imaging of carotid plaque vulnerability. Cerebrovasc Dis. 2015; 39(1):5–12. doi: 10.1159/000369123
- Fukumitsu R, Takagi Y, Yoshida K, Miyamoto S. Endoglin (CD105) is a more appropriate marker than CD31 for detecting microvessels in carotid artery plaques. Surg Neurol Int. 2013;4:132. doi: 10.4103/2152-7806.119081
- Folkersen L, Persson J, Ekstrand J, et al. Prediction of ischemic events on the basis of transcriptomic and genomic profiling in patients undergoing carotid endarterectomy. Mol Med. 2012;18(1):669–675. doi: 10.2119/molmed.2011.00479
- Perisic L, Aldi S, Sun Y, et al. Gene expression signatures, pathways and networks in carotid atherosclerosis. J Intern Med. 2016;279(3):293–308. doi: 10.1111/joim.12448
- Forrester SJ, Kawai T, O’Brien S, et al. Epidermal growth factor receptor transactivation: mechanisms, pathophysiology, and potential therapies in the cardiovascular system. Annu Rev Pharmacol Toxicol. 2016;56:627–653. doi: 10.1146/annurev-pharmtox-070115-095427
- Ulu N, Mulder GM, Vavrinec P, et al. Epidermal growth factor receptor inhibitor PKI-166 governs cardiovascular protection without beneficial effects on the kidney in hypertensive 5/6 nephrectomized rats. J Pharmacol Exp Ther. 2013;345(3):393–403. doi: 10.1124/jpet.113.203497
- Moroni F, Magnoni M, Vergani V, et al. Fractal analysis of plaque border, a novel method for the quantification of atherosclerotic plaque contour irregularity, is associated with pro-atherogenic plasma lipid profile in subjects with non-obstructive carotid stenoses. PLoS One. 2018;13(2):e0192600. doi: 10.1371/journal.pone.0192600
- Karadimou G, Folkersen L, Berg M, et al. Low TLR7 gene expression in atherosclerotic plaques is associated with major adverse cardio- and cerebrovascular events. Cardiovasc Res. 2017;113(1):30–39. doi: 10.1093/cvr/cvw231
- Grufman H, Goncёalves I, Edsfeldt A, et al. Plasma levels of high-sensitive C-reactive protein do not correlate with inflammatory activity in carotid atherosclerotic plaques. J Int Med. 2014;275(2):127–133. doi: 10.1111/joim.12133
- Poredos P, Spirkoska A, Lezaic L, et al. Patients with an inflamed atherosclerotic plaque have increased levels of circulating inflammatory markers. J Atheroscler Thromb. 2017;24(1):39–46. doi: 10.5551/jat.34884
- Setacci C, de Donato G, Chisci E, et al. Deferred urgency carotid artery stenting in symptomatic patients: clinical lessons and biomarker patterns from a prospective registry. Eur J Vasc Endovasc Surg. 2008;35(6):644–651. doi: 10.1016/j.ejvs.2008.02.003
- Yu H, Huang Y, Chen X, et al. High-sensitivity C-reactive protein in stroke patients — the importance in consideration of influence of multiple factors in the predictability for disease severity and death. J Clin Neurosci. 2017;36: 12–19. doi: 10.1016/j.jocn.2016.10.020
- Del Porto F, Proietta M, di Gioia C, et al. FGF-23 levels in patients with critical carotid artery stenosis. Intern Emerg Med. 2015;10(4):437–444. doi: 10.1007/s11739-014-1183-3
- Janczak D, Ziolkowski P, Szydełko T, et al. The presence of some cytokines and Chlamydia pneumoniae in the atherosclerotic carotid plaque in patients with carotid artery stenosis. Postepy Hig Med Dosw (Online). 2015;69: 227–232. doi: 10.5604/17322693.1140498
- Lepedda AJ, Nieddu G, Zinellu E, et al. Proteomic analysis of plasma-purified VLDL, LDL, and HDL fractions from atherosclerotic patients undergoing carotid endarterectomy: identification of serum amyloid A as a potential marker. Oxid Med Cell Longev. 2013;2013:385214. doi: 10.1155/2013/385214
- Montanari E, Stojkovic S, Kaun C, et al. Interleukin-33 stimulates GM-CSF and M-CSF production by human endothelial cells. Thromb Haemost. 2016;116(2):317–327. doi: 10.1160/TH15-12-0917
- Katagiri M, Takahashi M, Doi K, et al. Serum neutrophil gelatinase-associated lipocalin concentration reflects severity of coronary artery disease in patients without heart failure and chronic kidney disease. Heart Vessels. 2016;31(10):1595–1602. doi: 10.1007/s00380-015-0776-8
- Eilenberg W, Stojkovic S, Piechota-Polanczyk A, et al. Neutrophil gelatinase-associated lipocalin (NGAL) is associated with symptomatic carotid atherosclerosis and drives pro-inflammatory state in vitro. Eur J Vasc Endovasc Surg. 2016;51(5):623–631. doi: 10.1016/j.ejvs.2016.01.009
- Johnson JL, Jenkins NP, Huang WC, et al. Relationship of MMP-14 and TIMP-3 expression with macrophage activation and human atherosclerotic plaque vulnerability. Med Inflam. 2014;2014:276457. doi: 10.1155/2014/276457
- Norata G, Ballantyne C, Catapano A. New therapeutic principles in dyslipidaemia: focus on LDL and Lp(a) lowering drugs. Eur Heart J. 2013;34(24):1783–1789. doi: 10.1093/eurheartj/eht088
- Saksi J, Ijas P, Mayranpaa MI, et al. Low-expression variant of fatty acid-binding protein 4 favors reduced manifestations of atherosclerotic disease and increased plaque stability. Circ Cardiovasc Gen. 2014;7(5):588–598. doi: 10.1161/CIRCGENETICS.113.000499
- Van de Voorde J, Pauwels B, Boydens C, Decaluwґe K. Adipocytokines in relation to cardiovascular disease. Metab Clin Exp. 2013;62(11):1513–1521. doi: 10.1016/j.metabol.2013.06.004
- Mayer FJ, Gruenberger D, Schillinger M, et al. Prognostic value of neutrophils in patients with asymptomatic carotid artery disease. Atherosclerosis. 2013;231(2):274–280. doi: 10.1016/j.atherosclerosis.2013.10.002
- Ammirati E, Moroni F, Magnoni M, Camici PG. The role of T and B cells in human atherosclerosis and atherothrombosis. Clin Exp Immunol. 2015;179(2):173–187. doi: 10.1111/cei.12477
- Sternberg Z, Ghanim H, Gillotti KM, et al. Flow cytometry and gene expression profiling of immune cells of the carotid plaque and peripheral blood. Atherosclerosis. 2013;229(2): 338–347. doi: 10.1016/j.atherosclerosis.2013.04.035
- Martin-Ventura JL, Madrigal-Matute J, Munoz-Garcia B, et al. Increased CD74 expression in human atherosclerotic plaques: contribution to inflammatory responses in vascular cells. Cardiovasc Res. 2009;83(3):586–594. doi: 10.1093/cvr/cvp141
- Mantani PT, Ljungcrantz I, Andersson L, et al. Circulating CD40+ and CD86+ B cell subsets demonstrate opposing associations with risk of stroke. Arterioscl Thromb Vasc Biol. 2014;34(1):211–218. doi: 10.1161/ATVBAHA.113.302667
- Baragetti A, Palmen J, Garlaschelli K, et al. Telomere shortening over 6 years is associated with increased subclinical carotid vascular damage and worse cardiovascular prognosis in the general population. J Int Med. 2015; 277(4):478–487. doi: 10.1111/joim.12282
- Willeit P, Thompson SG, Agewall S, et al. Inflammatory markers and extent and progression of early atherosclerosis: meta-analysis of individual-participant-data from 20 prospective studies of the PROG-IMT Collaboration. Eur J Prev Cardiol. 2016;23(2):194–205. doi: 10.1177/2047487314560664
- Olson NC, Doyle MF, Jenny NS, et al. Decreased naive and increased memory CD4+ T cells are associated with subclinical atherosclerosis: the multi-ethnic study of atherosclerosis. PLoS ONE. 2013;8(8):e71498. doi: 10.1371/journal.pone.0071498
- Musialek P, Tracz W, Tekieli L, et al. Multimarker approach in discriminating patients with symptomatic and asymptomatic atherosclerotic carotid artery stenosis. J Clin Neurol. 2013;9(3):165–175. doi: 10.3988/jcn.2013.9.3.165
- Gabrile SA, Antonangelo L, Capelozzi VR, et al. Analysis of the acute systemic and tissue inflammatory response following carotid endarterectomy. Int Angiol. 2016; 35(2):148–156.
- Iłżecki M, Iłżecka J, Przywara S, et al. Effect of carotid endarterectomy on brain damage markers. Acta Neurol Scand. 2017;135(3):352–359. doi: 10.1111/ane.12607
- SPREAD. Stroke prevention and educational awareness diffusion. Hyperphar Group: Milano; 2007. 696 р. Available from: http://www.spread.it/
- Fittipaldi S, Pini R, Pasquinelli G, et al. High sensitivity C-reactive protein and vascular endothelial growth factor as indicators of carotid plaque vulnerability. J Cardiovasc Surg (Torino). 2016;57(6):861–871.
- Szabo P, Lantos J, Nagy L et al. l-Arginine pathway metabolites predict need for intra-operative shunt during carotid endarterectomy. Eur J Vasc Endovasc Surg. 2016;52(6): 721–728. doi: 10.1016/j.ejvs.2016.10.008
- Gohar A, Gonçalves I, Vrijenhoek J, et al. Circulating GDF-15 levels predict future secondary manifestations of cardiovascular disease explicitly in women but not men with atherosclerosis. Int J Cardiol. 2017;241:430–436. doi: 10.1016/j.ijcard.2017.03.101
- Bazan HA, Hatfield SA, O’Malley CB, et al. Acute loss of miR-221 and miR-222 in the atherosclerotic plaque shoulder accompanies plaque rupture. Stroke. 2015;46(11): 3285–3287. doi: 10.1161/STROKEAHA.115.010567
- Duschek N, Stojakovic T, Ghai S, et al. Ratio of apolipoprotein A-II/B improves risk prediction of postoperative survival after carotid endarterectomy. Stroke. 2015;46(6): 1700–1703. doi: 10.1161/STROKEAHA.115.009663
- Cole JE, Kassiteridi C, Monaco C. Toll-like receptors in atherosclerosis: a ‘Pandora’s box’ of advances and controversies. Trends Pharmacol Sci. 2013;34(11):629–636. doi: 10.1016/j.tips.2013.09.008
- Dominguez-Villar M, Gautron A-S, Marcken M, et al. TLR7 induces anergy in human CD4+ T cells. Nat Immunol. 2015;16(1):118–128. doi: 10.1038/ni.3036
- Foks AC, Lichtman AH, Kuiper J. Treating atherosclerosis with regulatory T cells. Arterioscler Thromb Vasc Biol. 2015;35(2):280–287. doi: 10.1161/ATVBAHA.114.303568
- Pekarova M, Koudelka A, Kolarova H, et al. Asymmetric dimethyl arginine induces pulmonary vascular dysfunction via activation of signal transducer and activator of transcription 3 and stabilization of hypoxia-inducible factor 1-alpha. Vasc Pharmacol. 2015;73:138–148. doi: 10.1016/j.vph.2015.06.005
- Arfvidsson B, Nilsson TK, Norgren L. S100B concentrations increase perioperatively in jugular vein blood despite limited metabolic and inflammatory response to clinically uneventful carotid endarterectomy. Clin Chem Lab Med. 2015;53(1):111–117. doi: 10.1515/cclm-2014-0283
- Jia L, Hao F, Wang W, et al. Circulating miR-145 is associated with plasma highsensitivity С-reactive protein in acute ischemic stroke patients. Cell Biochem Funct. 2015;33(5):314–319. doi: 10.1002/cbf.3116
- Galyfos G, Sigala F, Tsioufis K, et al. Postoperative cardiac damage after standardized carotid endarterectomy procedures in low- and high-risk patients. Ann Vasc Surg. 2013;27(4):433–440. doi: 10.1016/j.avsg.2012.06.028
- Galyfos G, Zografos G, Filis K. Regarding “cardiac morbidity of carotid endarterectomy using regional anesthesia is similar to carotid stent angioplasty”. Vasc Endovascular Surg. 2015;49(1-2):45–46. doi: 10.1177/1538574415587513
- Rigamonti F, Carbone F, Montecucco F, et al. Serum lipoprotein (a) predicts acute coronary syndromes in patients with severe carotid stenosis. Eur J Clin Invest. 2018;48(3). doi: 10.1111/eci.12888
- Ammirati E, Moroni F, Magnoni M, et al. Circulating CD14+ and CD14highCD16- classical monocytes are reduced in patients with signs of plaque neovascularization in the carotid artery. Atherosclerosis. 2016;255:171–178. doi: 10.1016/j.atherosclerosis.2016.10.004
- Pelisek J, Well G, Reeps C, et al. Neovascularization and angiogenic factors in advanced human carotidartery stenosis. Circ J. 2012;76(5):1274–1282. doi: 10.1253/circj.cj-11-0768
- Slevin M, Turu MM, Rovira N, et al. Identification of a ‘snapshot’ of co-expressed angiogenic markers in laser-dissected vessels from unstable carotid plaques with targeted arrays. J Vasc Res. 2010;47(4):323–335. doi: 10.1159/000265566
- Ammirati E, Magnoni M, Moroni F, et al. Reduction of circulating HLA-DR+ T cell levels correlates with increased carotid intraplaque neovascularization and atherosclerotic burden. JACC Cardiovasc Imaging. 2016;9(10):1231–1233. doi: 10.1016/j.jcmg.2015.10.010
- Shimizu K, Shimomura K, Tokuyama Y, et al. Association between inflammatory biomarkers and progression of intracranial large artery stenosis after ischemic stroke. J Stroke Cerebrovasc Dis. 2013;22(3):211–217. doi: 10.1016/j.jstrokecerebrovasdis.2011.07.019
- Liu LB, Li M, Zhuo WY, et al. The role of hs-CRP, D-dimer and fibrinogen in differentiating etiological subtypes of ischemic stroke. PLoS One. 2015;10(2):e0118301. doi: 10.1371/journal.pone.0118301
- Naylor AR. Identifying the high-risk carotid plaque. Cardiovasc Surg. 2014;55(2 Suppl 1):11–20.
- Liberale L, Carbone F, Bertolotto M, et al. Serum adiponectin levels predict acute coronary syndrome (ACS) in patients with severe carotid stenosis. Vascul Pharmacol. 2018;102:37–43. doi: 10.1016/j.vph.2017.12.066
- Shalhoub J, Viiri LE, Cross AJ, et al. Multi-analyte profiling in human carotid atherosclerosis uncovers pro-inflammatory macrophage programming in plaques. Thromb Haemost. 2016;115(5):1064–1072. doi: 10.1160/TH15-08-0650
- Stoger JL, Gijbels MJ, van der Velden S, et al. Distribution of macrophage polarisation markers in human atherosclerosis. Atherosclerosis. 2012;225(2):461–468. doi: 10.1016/j.atherosclerosis.2012.09.013
Supplementary files
